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Abstract. For the tasks of satellite navigation, we conduct the synthesis of the interpolation 

algorithms within the fixed interval and in the fixed point, when the complex processing of 

measurements of the range and Doppler frequency is implemented. The simulation results are 

provided. 

1.  Introduction 

The requirements for the present radio navigation satellite systems (RNSS), such as GPS and 

GLONASS, are constantly increasing. There are various ways to improve the system characteristics, 

such as accuracy, reliability, integrity. One approach to the system improvement is to incorporate on-

board equipment for inter-satellite measurements (OEIM) into the system [1]. Such equipment carries 

out off-line testing of the orbits parameters of navigation space vehicles (NSVs), with the terrestrial 

command-instrumentation facility unemployed. 

There are made great demands of the inter-satellite instrumentation concerning the NSVs reciprocal 

movement measurements accuracy. Specifically, for pseudo-delay they are up to tens of centimeters 

and for pseudo-velocity – less than ten millimeters per second. In order to achieve such accuracy, it is 

necessary to apply the optimal tracking algorithms for signals parameters measuring [2]. The 

information interchange between NSVs revealing the measured parameters of the reciprocal 

movement occurs in the period of communication sessions. Here the transmitted data are related to the 

some fixed point of time  Tttt kkms  , , which is situated within the last time measuring span. Thus, 

there is a problem of generation of the smoothed (interpolated) estimates of pseudo-range and pseudo-

velocity at the specified relevant point in time mst , based on the measurements obtained into the set 

interval  Ttt kk , . With very high precisions of the generated estimates required, for the solution of 

this problem it is necessary to apply the optimal interpolation algorithms. Common approaches to the 

synthesis of the interpolation algorithms in case of the linear problem are described in [3-6]. In [7] 

there are specified optimal filtering and interpolation algorithms for nonlinear dynamic model and 

linear observations. Some mathematical aspects of the interpolation algorithms stability are discussed 

in [8]. The present paper is focused on the study of the interpolation algorithm in the context of the 

inter-satellite measurements for the GLONASS system. 
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2.  The problem statement 

The equipment for inter-satellite measurements is intended for determining the relative ranges and 

velocities between 24 NSVs of the GLONASS system, distributed in three orbital planes in normal 

mode. As measuring signals the phase-shift keyed signal [1, 9] are used in inter-satellite measuring 

system. Phase-shift keying is implemented by pseudorandom sequences, known as the ranging codes. 

As within GLONASS system, the measuring signals are used simultaneously for the navigating 

information transfer realized by additional digital phase modulation. Thus, OEIM signal can be 

mathematically presented as 

         00cos  ttGtAGtS DMRC , (1) 

where A is the signal amplitude,  tGRC  is the ranging code,  tGDM  is the digital message, 0  is the 

signal carrier frequency, τ is the signal pseudo-delay, 0  is the initial phase. We presuppose that the 

signal (1) is distorted by Gaussian white noise  tn  with one-sided spectral density 0N  and designate 

the power-to-noise ratio 0NPc  (in Hz) as 
0ncq . 

The inter-satellite measuring system cycle is 20 s and is divided into for intervals on 5 s allocated 

for the operation of the corresponding satellite constellations. The transmission session of one satellite 

is about 4.5 s, subject to the time required for switching the reception/transmission modes. During the 

same time interval, the reception goes on by others NSVs of the signal informing about the pseudo-

range and pseudo-velocity estimates currently generated. It is necessary to output the information on 

the measured pseudo-range and pseudo-velocity at the point of time  5.4,0mst  s (for example, 

4mst  s). We now assume a task of the synthesis of optimal estimates of pseudo-range and pseudo-

velocity matching the point of time  5.4,0mst , according to the results of the observations obtained 

over the time interval  5.4,0mst  s. 

 

3.  The synthesis of the current optimal estimates 

 

3.1.  Generalities 

In the optimal filtering theory the required estimates belong to the class of the interpolated estimates 

[3, 10]. The problem of interpolation of some process  tx  according to the observations  ty  over the 

time interval  t,0  is to form the estimate 
t

x

ˆ  for the time moment  t,0 . In certain interpolation 

algorithms such estimate is formed through additional processing of the current estimates 
tt

x̂ , i.e. the 

estimates which have been obtained during the observations accessible at a present point of time. We 

will start with briefly considering the algorithms for the generation of optimal estimates referring to 

the problem of inter-satellite measurements (see [1, 2] in more details). 

In [1, 2] it is shown that the range change between NSVs moving in their orbits within the time 

intervals with the duration of 5 s is sufficiently approximated by the second order polynomial 

   22
000 tatVRtR    

with the following key parameters: maximum range 51000max R  km, minimum range 10000max R  

km, maximum relative velocity 6200max V  m/s, maximum relative acceleration 2
max m/s  9.3a . 

We designate the received signal envelope delay as τ and introduce a state vector x  [1] for its 

description, so 

 kk , Cx , (2) 

where  001 C , k,x  is the vector described by the equation 
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 1,1,,   kkk GFxx , (3) 

In Eq. (3) the designations are: 

100

10

01

T

T

F , 

1

0

0

G  and 1,  k  is the generating discrete Gaussian 

white noise with zero mathematical expectation and a certain dispersion 


D . 

Taking into account the high requirements to the system accuracy and the high volatility of the 

estimated processes, in order to generate the optimal current estimates of pseudo-range and pseudo-

velocity, there should be applied the principles of a complex filtration, all necessary information 

acquired from both envelope and phase of the received signal. Therefore, as in [2], we consider OEIM 

tracing systems having the structure presented in Fig. 1 and including the components described 

below. 

 

Figure 1. Block diagram of the complex signal delay tracing system 

3.2.  Autonomous signal phase tracking system (PTS) 

The PTS discriminator is described by the expression 

    kkkk IQu th,d  ,  

where  th  is the hyperbolic tangent, kI , kQ  are the signals at the correlator output of the OEIM 

receiver: 

      


 



M

l

klkklkRClk

n

k ttGty
A

I
1

,10,1,12

~
cos~ ,  

      


 



M

l

klkklkRClk

n

k ttGty
A

Q
1

,10,1,12

~
sin~ ,  

and 

     lklklk ntSty ,1,1,1   .  
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Here lkn ,1  is the discrete Gaussian white noise with the dispersion dn TN 20
2  , dT  is the sampling 

interval, TMTd   is the accumulation time at the correlator, k
~  is the reference correlator signal 

delay, k
~

 is the reference correlator signal phase. 

As the received signal phase is linearly related to signal delay, i.e.  0k , we describe it by 

the equations that are similar to Eqs. (2), (3) 

 kk , Cx ,      1,1,,   kkk GFxx   

with the state vector 
T

,3,2,1, kkkk xxx  x . Here 1,  k  is the discrete Gaussian white noise 

with the certain dispersion ,D , and other designations coincide with the ones introduced in Eqs. (2), 

(3). It should be noted that the component kx ,2  of the vector k,x  is the Doppler translation, i.e. 

kkx d,,2  . 

The filter equations in PTS have the form of 

  kkkkk u  

~~ˆ
1,d

T
,1,, CDxx ,      1,

ˆ~
 kk xFx ,  

(4) 

   2T1T
,

T
1,

1
,

~
nkk D 





 CCGGFFDD   

with the initial conditions  0ˆˆ
0, xx  ,  00,   DD . Here   TqTq ncncn 00

2211~ 2   is the 

dispersion of the equivalent observation noise of the phase discriminator. 

3.3.  Complex signal delay tracking system (DTS) 

Unlike PTS, the DTS is complex one. The delay discriminator is described by the equation 

      kkLkEkk IIIu th ,,,d  ,  

where 

      


 



M

l

klkklkRClk

n

kE ttGty
A

I
1

,10,1,12,

~
cos2~ ,  

      


 



M

l

klkklkRClk

n

kL ttGty
A

I
1

,10,1,12,

~
cos2~ ,  

and   is the time shift between reference correlator signals. 

When designing the complex DTS filter, the equivalent linear observations of the delay 

discriminator are used [1, 10]: 

 kkky ,,
~~
  .  

Here k,
~
  is the noise of equivalent observations approximated by discrete Gaussian white noise with 

the dispersion TqD nc 0
42

~  . 

We now write down the observations of the Doppler frequency estimate kk x ,2d,
ˆˆ

  formed into 

PTS as follows 

 kVkkVkkkV Vy ,,0,d,d,,
~~ˆ~


  ,  
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where dtdV  , kV ,
~


  can be taken by the discrete Gaussian white noise with the dispersion 

 2PTS
2
~~ 564 fD nV


 , as shown in [1],  and PTSf  is the PTS bandpass. 

We introduce the following observation 

 kk
kV

k

k y

y
,,

,

, ~
~

~
~








ηHxy ,  

where 
0

0
   

0

01

0
H , k,

~
η  is the vector process with the dispersion 











V
D

D

~

~

~
0

0
ηD , k,x  and 

is the state vector determined by Eq. (2). 

The current estimate-fitting procedure for obtaining 
kk

̂  and optimal filter equations of the vector 

k,x  are written down in the form of 

 
kkkk ,

ˆˆ


 xC ,       
kkkkkkkkk ,,,,

~~~ˆ


 xHyKxx , (5) 

 1
~

T

,,



 
 ηDHDK

kkkk
,      

11,,
ˆ~




kkkk
xFx , (6) 

 TT

11,1,

~
GGFFDD


 D

kkkk
, (7) 

 HDHDD η
1

~
T1

1,

1

,

~ 





 


kkkk
, (8) 

where 

k

k

k

k

k

k

kk

K

K

K

K

K

K

,6

,4

,2

,5

,3

,1

,



K  is the weight matrix. In Eqs. (5)-(8) index kk  designates that the 

corresponding estimate (parameter) is formed at k-th moment of time, according to the observations 

received up to the k-th moment inclusive. Further, we would name such estimate as the filtration 

estimate, i.e. obtained as a result of a current filtration of information processes. 

Block diagram of the signal DTS described by Eqs. 5-8 is shown in Fig. 1. Here it is taken into 

account that 

   d,d,
~~ Suy kkk ,  

where dS  is the slope of characteristic of the delay discriminator which is described by the formula 

(6). 

PTS is described by Eqs. (4), it represents a classic signal phase tracking system with third-order 

astaticism [1]. 

 

4.  The interpolation algorithms 

 

4.1.  Generalities 

In optimal filtering theory there are a number of certain interpolation algorithms differing by the 

problem statement [3, 4, 10]: interpolation within the fixed interval, interpolation in the fixed point 

and interpolation with the fixed delay. 

The algorithm for the optimal interpolation within the fixed interval presupposes that the 

observation interval is fixed, and the moment of time, for which it is necessary to obtain the estimate, 

varies. 

The algorithm for the optimal interpolation in the fixed point implies that the moment of time is 

specified for which it is necessary to obtain the estimate, but observation continues after this time, and 
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the estimate of parameters at this point keeps on getting more and more precise. The first two 

algorithms can be used for the solution of the considered problem. In the third algorithm we see that 

there is a time delay between the estimate and the observations being received, and this case is not 

studied here. 

4.2.  Optimal interpolation within the fixed interval 

Let us assume that it is necessary to obtain the estimate of parameters for a time t . We designate the 

current estimate 
kk,

ˆ


x  that has been interpolated at the moment of time t  as 
k,

x


. Then the 

interpolation equations can be written down in the form of 

  



,1,,,

ˆˆ xFxKxx
kk


, (9) 

 1

11,

T

,



  DFDK


, (10) 

   T

11,1,,,
 

 KDDKDD


kk
, (11) 

where ,
x̂  is the optimal filtration estimate of the parameters formed according to Eq. (4), 

,
D  is 

the dispersion of the filtering error of the vector ,
x̂  determined by Eqs. (7), (8), and 

k,
D


 is the 

dispersion of the error of the interpolated estimate. 

In order to obtain the interpolated estimate at the step ν, it is necessary, according to Eqs. (5)-(8), to 

carry out an optimal filtration to the end of measurements (until the step with the number k), then, 

referring to the initial conditions 
kk,

ˆ


x , 
,

D , to solve Eqs. (9)-(11) in reverse time up to the moment 

t . Results of numerical simulation of the algorithm (9)-(11) are presented below. 

4.3.  Optimal interpolation in the fixed point 

For the considered task, the optimal interpolation algorithm in the fixed point can be written down 

using the general equations [10] and gets the form of 

  
1,,1,,

~ˆ



kkkkkkk

xxKxx


, (12) 

 1

1,

T

11,1

~ 




kkkkkk
DFDKK


, (13) 

 
T

1,,1,,

~
kkkkkkkk 

 KDHKKDD


, (14) 

where kk,
K  are the coefficients of the optimal filter determined by Eq. (6). 

In order to solve the specified equations, it is necessary to solve the filter equations (5)-(8) up to the 

moment t  inclusive. Then the initial conditions 


,,
x̂x


, IK 




 should be referred to them, 

where I  is the unit matrix, 



,,

DD


 and after that we pass to the joint solution of the filter 

equations (9)-(11) and the interpolation equations (12)-(14), until the termination time of observations 

kt  comes. As a result, the required interpolated estimate k,
x


 will be obtained. 
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5.  The simulation results of the interpolation algorithms 

The interpolation algorithms (9)-(11), (12)-(14) were simulated when operating within the OEIM 

structure. Besides, the filtering estimate 
,

x̂  was additionally controlled, so that the measurements 

following the time point t  were not used with it. 

In Figs. 2 and 3 there are shown the dependences of mean square errors (MSEs) of the estimates of 

range and velocity for the interpolation algorithm within the fixed interval. These dependences had 

been obtained by statistical averaging over 200 realizations. In Figs. 4 and 5 the similar dependences 

are traced for the interpolation algorithm in the fixed point, they had been obtained by statistical 

averaging over 50 realizations, the number of the realizations reduced due to huge computing costs. It 

should also be noted that in Figs. 4, 5 the simulation results are given for the case when the “position 

of the fixed point” changes from 1 s to 4.5 s. 

 

 

 

Figure 2. The dependences of mean square 

errors of the range filtering and range 

interpolation within the fixed interval 

 Figure 3. The dependences of mean square 

errors of the velocity filtering and velocity 

interpolation within the fixed interval 

 

 

 

Figure 4. The dependences of mean square 

errors of the range filtering and range 

interpolation in the fixed point 

 Figure 5. The dependences of mean square 

errors of the velocity filtering and velocity 

interpolation in the fixed point 

 

From the presented dependences it follows that, if compared with the filtering estimates, the 

interpolated estimates of the range demonstrate a gain in accuracy, the more time has passed since the 

end of the observation interval for which the corresponding estimate is formed, and this gain may 

make up to 2 and even more times. 

The functional efficiency of the algorithms for the interpolation within the fixed interval and in the 

fixed point is almost identical. From the point of view of practical implementation, the algorithm for 
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the interpolation in the fixed point is preferred, since in this case interpolation and filtration are carried 

out simultaneously. At the same time, the algorithm for the interpolation within the fixed interval 

requires that filtration should be conducted at first, so that the intermediate variables could be stored, 

and only then one could proceed to solving the interpolation equations in reverse time. 

6.  Conclusion 

Thus, by applying the optimal information processes filtering theory, for a problem of satellite 

navigation, the optimal interpolation equations are obtained within the fixed interval and in the fixed 

point. The specified equations realize the complex processing of the measurements of navigation radio 

signal delay and Doppler translation. By means of simulation modeling, it is shown that the 

synthesized interpolation algorithms provide a gain in accuracy of the interpolated estimates of range 

over the results provided by the filtering estimates, and that such gain may be 2 times and more. A 

gain in accuracy of the interpolated estimates increases with the interpolation interval length. It is also 

demonstrated that the functional efficiency of interpolation algorithms within the fixed interval and in 

the fixed point is practically identical. Therefore, from the point of view of practical implementation, 

the algorithm for the interpolation in the fixed point can be recommended, as it is simpler in 

realization technically. 
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