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Abstract. A compact microscope based on nitrogen double stream gas puff target soft X-ray 

source, which emits radiation in the water-window spectral range, at the wavelength of λ = 2.88 

nm, is presented. The microscope, employing ellipsoidal grazing incidence condenser and a 

Fresnel zone plate objective, is capable of capturing images with a 60 nm spatial resolution and 

exposure time as low as a few seconds. Examples of different applications of the SXR 

microscopy, and its applicability for various fields of science, are presented and discussed. 

1.  Introduction 

The water-window spectral range (λ = 2.3 - 4.4 nm) [1] is particularly suitable for biological imaging 

(of cells, membranes, lipids, DNA plasmids, etc.) because it is possible to obtain high contrast images 

due to a significant difference in absorption of water (oxygen) and carbon - biological sample 

constituents.  Soft X-ray (SXR) microscopy has been successfully employed with different techniques, 

mainly in transmission mode, using diffractive optics, such as zone-plates [2], raster scanning of the 

sample by focused SXR beam [3] or as a contact microscopy [4]. Short wavelength sources, such as 

synchrotrons, allow for imaging in the water-window with spatial resolution of 10 nm [5]. However, for 

a worldwide spread and possible commercial applications, the development and use of a compact high 

resolution imaging systems is of major importance. In such systems the tradeoff between the exposure 

time and the size and complexity of the system is still challenging [6–8]. In this work we try to partially 

overcome presented limitations showing a SXR microscopy system, based on a double stream nitrogen 

gas puff target [9], capable of resolving 60 nm features, with a desk-top footprint.  

2.  Description of the SXR microscope 

The experimental setup can be seen in figure 2. A nitrogen plasma was produced by focusing Nd:YAG 

laser pulses 4ns/ 0.74J (NL303HT, from EKSPLA) with an f = 25 mm focal length lens, onto a double 

stream gas puff target. The gaseous target is formed by two circularly symmetric nozzles. The inner and 

outer nozzles inject nitrogen (at pressure of 8 bar) and helium (6 bar), respectively. The nozzle timing 

and position in respect to the laser focal spot were optimized for highest photon flux at the sample plane 

[10]. The SXR radiation from the nitrogen plasma is collected and focused by an ellipsoidal, axi-

symmetrical nickel coated condenser mirror (Rigaku Innovative Technologies Europe s.r.o.) that can 

efficiently reflect radiation from the SXR region. The nitrogen plasma emission was monochromatized 
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using a 200 nm thick, free-standing titanium filter (Lebow). The sample is imaged using a Fresnel zone 

plate objective, r=30 nm, (Zoneplates Ltd., UK) onto a SXR sensitive back-illuminated CCD camera 

(1 Mpix, i-Kon, DO-934N, from Andor). The geometrical magnification of the system is ~220x (sample 

to CCD). The source photon flux at the sample plane was equal to (7.9 ± 0.2)·109 photons/pulse at 2.88 

nm wavelength, theoretically (8 ± 0.2)·1011 photons/(sec·0.1%BW). This high value allows to achieve 

short exposure times and high spatial resolution. The half-pitch resolution of the microscope was 

assessed by a well established knife edge (KE) test resulting equal to 60 nm. More details can be found 

in [10,11]. 

  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Photograph of the SXR microscope. 

3.  Imaging results and applications 

In case of microscopy, the most important factor is the quality of images of real samples and its possible 

applications. Some examples of water-window images of various objects are depicted in figs. 2 and 3. 

Exposures of 1 to 600 SXR pulses were required, at 10 Hz source repetition rate, to acquire the SXR 

images. During the image acquisition, the CCD camera was cooled down to -20 ºC to decrease its 

intrinsic thermal noise. Below we present some recent applications of this system. 

3.1 Material science and nanotechnology applications 

A silicon nitride membrane, 50 nm thick, was used as a support for a thin layer of saccharose 

(C12H22O11), as depicted in figure 2a). Because of the use of monochromatic radiation, it was possible 

to measure the transmittance of a single (71.8 %) and double (52.3 %) saccharose layers, yielding the 

layer thickness of ~160 nm. More details about this work can be found in [10]. 

A SXR image of gold microcracks is depicted in figure 2b).  A high resolution image was obtained 

with features visible beyond the diffraction limit of the ordinary visible light microscope. A small, 

contrast-enhanced inset shows a branched nanocrack in more detail due to higher spatial resolution 

achievable with the SXR radiation. The width of the crack was ~100 nm. More details is in [11]. 

 

3.2 Biological applications 

Images of dehydrated adherent CT 26 fibroblasts, derived from colon carcinoma Mus musculus (strain 

BALB/c) are depicted in figure 3a-c). The cells, 20-30 m in size, were imaged using a visible light 

microscope a) and are directly compared to the SXR image b). Their internal structure is visible due to 

a phase contrast in figure 3a) and as a modulation of the sample absorption in the SXR image –b). figure 

3c) shows comparison of small areas of figure 3a) and 3b). The SXR image shows enhanced spatial 

resolution due to much shorter wavelength, beyond the capabilities of visible light microscopes. The 

internal and external structures of the cells, of the order of ~60 nm, are clearly visible in the SXR image, 

as indicated with arrows in figure 3c), while in the visible light micrograph they cannot be resolved. 

More details can be found in [11]. 

Source chamber
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Figure 2. A 50 nm thick silicon nitride membrane with ~160 nm thick saccharose layer – a). A 100 nm 

thick silicon nitride membrane with 100 nm thick gold layer with microcracks - b). 

 

CT 26 fibroblast, prepared without fixing procedure, are depicted in figure 3d-e). The first image 

was obtained with a traditional optical microscope (NA=0.7, 40x) and the second one shows a SXR 

image, acquired with 200 SXR pulses (22 sec exposure). The sample was prepared with a gradual 

dehydration in ethanol series (final concentration 70% EtOH), without any fixation procedure. Also in 

this case it is possible distinguish internal and external structures of the cells. The dehydration procedure 

by a carbon-rich ethanol washes causes, however, the sample to absorb too much SXR radiation.  

 
Figure 3. Comparison of visible light microscopy image – a, d) and SXR images – b, e) of dehydrated 

CT 26 fibroblasts, with and without fixing procedure, respectively. Image c) shows comparison of small 

areas and smallest features in the visible light microscopy image and the SXR image. The SXR image 

e) was obtained in the region indicated by a red square in figure d). A supercoiled pBR322 plasmid 

DNA is imaged in – f). All images, except c), the field of view (FOV) is 60x60 m2. 

 

A supercoiled pBR322 plasmid DNA (4361bp), circular double-stranded DNA from Inspiralis, UK, 

was deposited on top of 50 nm thick Si3N4 membrane, from 100 ng / l solution, dried in nitrogen 

atmosphere for 20 minutes and imaged - figure 3f). The aggregations are clearly visible; some of them 

are separated from the “DNA bulk” and vary in size from a few microns down to hundreds of 

nanometers. More information about those measurements is presented in [10].  

4.  Conclusions 

In conclusion, we presented a water-window compact, desk-top microscope, based on nitrogen double 

stream gas puff target SXR source and Fresnel zone plate objective. The microscope allows capturing 

magnified images of the objects, with 60 nm half-pitch spatial resolution, exposure time as low as a few 

seconds, desk-top footprint, easy accessibility and simple operation. Such system does not require 
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sample preparation, such as gold coating in case of SEM, exploits natural, optical absorption contrast in 

the water-window spectral range, is adequate for biological imaging and may be considered as a 

complementary imaging tool to the already well established techniques. It was also shown that this 

compact SXR microscope is capable of imaging variety of different samples from various fields of 

science and technology, including, but not limited to, biology, material science and nanotechnology. 

The versatility of such microscope may open the possibility of widespread and commercialization of 

such systems in the near future. 
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