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Abstract. A new approach to three-dimensional (3D) dosimetry based on optically-stimulated 
luminescence (OSL) is presented. By embedding OSL-active particles into a transparent 
silicone matrix (PDMS), the well-established dosimetric properties of an OSL material are 
exploited in a 3D-OSL dosimeter. By investigating prototype dosimeters in standard cuvettes 
in combination with small test samples for OSL readers, it is shown that a sufficient 
transparency of the 3D-OSL material can be combined with an OSL response giving an 
estimated >10.000 detected photons in 1 second per 1mm3 voxel of the dosimeter at a dose of 
1 Gy. The dose distribution in the 3D-OSL dosimeters can be directly read out optically 
without the need for subsequent reconstruction by computational inversion algorithms. The 
dosimeters carry the advantages known from personal-dosimetry use of OSL: the dose 
distribution following irradiation can be stored with minimal fading for extended periods of 
time, and dosimeters are reusable as they can be reset, e.g. by an intense (bleaching) light field.  

1. Introduction 
Modern radiotherapy (RT), such as e.g. intensity-modulated RT or volumetric modulated arc therapy, 
as well as the emerging techniques using heavy charged particles, e.g. proton therapy, employ 
complex spatially modulated 3D radiation fields to deliver therapeutic doses during treatment 
procedures. Thus, quality assurance (QA) before patient treatment is considered as a necessary 
prerequisite [1]. The basic dosimetric tools in RT are ionization chambers [2, 3]. On the other hand, 
methods based on luminescent passive detectors such as optically stimulated luminescence (OSL) 
detectors are also widely applied, especially for personal dosimetry and phantom measurements [4, 5]. 
However, it seems that only 3D dosimeters (consisting of a radiosensitive volume) meet the 
expectations of complex 3D dose measurements. The currently known materials used for 3D 
dosimetry are based mostly on polymerizing [6-11] and radiochromic gels or plastics [12-23]. 
However, the clinical use of these dosimeters has so far been limited, possibly due to different 
shortcomings of these materials, e.g. in terms of stability, environmental sensitivity or cost of use [24]. 

Dosimetry based on OSL relies on the ability of using light for interrogating trapped states in 
certain crystalline materials. Upon RT, the population in the trapped states carries information on the 
local dose and when subsequently subjecting the OSL material to light, the trapped electrons are 
released to the conduction band and recombine with holes to emit photons with an energy exceeding 
that of the stimulating light. Based on the intensity of this OSL light it is possible to evaluate the 
absorbed dose [4]. It has previously been demonstrated that two-dimensional (2D) dose distributions 
can be obtained by imaging the OSL light from a sample during stimulation, e.g. for use in RT [5].  
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In this paper, a new approach to 3D dosimetry will be presented. We propose a new reusable 3D 
radiation dosimetry system, based on OSL material embedded homogenously inside a transparent 
silicone elastomer matrix, a so-called 3D-OSL dosimeter. With an appropriate optical setup, 3D dose 
distributions can be obtained from the OSL emission. 
 
2. Materials and methods 

2.1. The matrix material 
The matrix consists of a transparent polymeric material based on polydimethylsiloxane silicones 
(PDMS), which is a commercially available silicone consisting of pre-weighed monomer and curing 
agent. In the current investigation the SYLGARD® 184 Silicone Elastomer Kit from Dow Corning 
with a curing agent in 1:10 weight ratio was used. 

2.2. The OSL material 
The OSL material used is lithium fluoride (LiF) doped with magnesium, copper and phosphorus 
(LiF:Mg,Cu,P - MCP). This material is in widespread use as a very well-established and highly 
sensitive TL detector e.g. in personal dosimetry, but it has also very good OSL properties [5, 25-27]. 
The MCP powder is embedded homogenously inside the silicone matrix which acts as a host of OSL 
grains. 

2.3. Preparation 
Prototype 3D dosimeters were cast in 1 x 1 x 5 cm3 cuvettes containing 0.3 g of MCP microcrystals 
mixed homogenously in 4 g of silicone elastomer. The dosimeters were obtained by mixing dry MCP 
particles into a silicone matrix. In order to check the anticipated OSL signal levels from each 1 mm3 
voxel of a 3D dosimeter, standard OSL-reader aluminum trays carrying amounts of OSL material 
corresponding to those found in 1 mm3 of the 3D dosimeter were prepared. Two concentrations of 
OSL powder, which were embedded inside the silicone matrix and poured into the trays, were 
investigated. Sample no. 1 used approximately 0.06 mg of pure OSL powder, while sample no. 2 used 
0.2 mg of OSL powder. A reference sample containing clear silicone without powder was also 
prepared. 

2.4. The read-out system 
The samples were read-out using the standard Risø TL/OSL DA-20 reader. The samples were 
irradiated with beta radiation to a dose at the level of 1 Gy in all cases. The samples were stimulated 
with blue light emitting diodes (LEDs), with emission centered at 470 nm and an intensity of ~80 
mW/cm2 at the sample. A Hoya UV-340 filter of 7.5 mm thickness and Ø = 45 mm were used as a 
detection filter. For the analyses of the OSL signal, the period of stimulation was 100 s.  
 
3. Results and discussion 
Although both the PDMS matrix and the individual OSL particles are transparent, the 3D-OSL 
dosimeter material appeared slightly misty, see Figure 1. The transparency depended on the amount of 
MCP powder used, so the concentration of OSL particles must be optimized as a compromise between 
signal level per volume and overall transparency. Figure 1 shows a prototype fulfilling both 
requirements, as discussed in more detail below. One of the advantages of using MCP material in 
combination with the Sylgard 184 silicone elastomer is that the refractive-index match between LiF 
and Sylgard 184 is quite good for visible wavelengths, which minimizes light scattering from the 
embedded particles. 

During the first second of a standard OSL read-out procedure, ~10,000 and ~40,000 counts 
were observed from samples 1 and 2, respectively. This corresponded to the anticipated signal levels 
from each 1mm3 voxels from the 3D dosimeter (at a concentration similar to that of figure 1). We also 
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noted that the silicone matrix in itself – as expected – did not add to the OSL signal (see curve labelled 
“Empty probe” in Figure 2).  
 

 

Figure 1. A 3D dosimeter in the form of a 1 x 1 x 
5 cm3 cuvette containing 4 g of silicone matrix 
combined with 0.4 g of MCP powder. 

 

 
 As mentioned, the data presented in the figure 2 were obtained using a commercial OSL reader 
equipped with UV filters and a PMT-tube. In order to obtain 3D distributions for dosimeters as shown 
in figure 1, an appropriate optical setup should be applied. For example, by stimulating the OSL 
dosimeter with a light sheet (e.g. from a laser source), and imaging the luminescence intensity across 
that sheet (e.g. by a combination of optical filters and a camera), the dose distribution in a plane can be 
measured. When this plane is shifted across the dosimeter, a 3D dose distribution is directly obtained 
without the need for inversion algorithms. 

 

 
 
Figure 2. OSL decay-curves showing the 
number of counts in 0.4 s time bins from 
different 3D-OSL samples obtained by 
irradiating with a beta source to a dose of 1 
Gy. Sample 1 (blue dashed line) contains 
0.06 mg of MCP powder, sample 2 (red 
dotted line) contains 0.2 mg of MCP 
powder and the last sample contains silicone 
without MCP powder (black solid line). The 
OSL was stimulated with a commercial 
OSL Risø TL/OSL DA-20 reader as 
described in the text. 
 

An advantage of using the OSL mechanism for dosimetry is that the dosimeters become 
reusable. It is well known that OSL dosimeters can be reset by temperature or light-bleaching 
stimulation. The same approach can be used for the OSL material embedded in the silicone host. The 
new 3D dosimeter also benefits from the well-established dosimetric properties of the MCP material 
which comprise a wide dynamic range and a linear dose response, together with the potential ability to 
measure the linear energy transfer (LET) in therapeutic beams. [4, 5, 25-28]. The use of PDMS as a 
host material makes it simple to cast dosimeters into anthropomorphic shapes and the flexibility of the 
material even allows for simulating organ deformations during RT in realistic geometries [23]. 

 
4. Conclusion 
We proposed a new reusable 3D dosimeter system based on OSL material embedded homogenously in 
a transparent silicone matrix and have documented the initial good OSL signal levels for the amount of 
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MCP anticipated in a 1mm3 voxel. The new 3D-OSL dosimeter has the potential to verify complex 3D 
RT doses with high spatial resolution while maintaining the attractive properties of OSL dosimetry.  
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