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Abstract. A large-volume liquid scintillator detector was used to measure individual energy 
layers from a clinical prostate treatment plan on a scanning proton beam system. Lateral and 
beam’s-eye view images of the dose distribution were acquired with two CCD cameras facing 
adjacent sides of a scintillator tank. The measured dose images were compared with calculated 
dose distributions from a validated Monte Carlo model. The measured and calculated dose 
distributions showed good agreement, with the exception of the Bragg peak region of the lateral 
view, which exhibited ionization quenching. The beam’s-eye and lateral views achieved gamma 
analysis passing rates of 99.7% and 92.5%, respectively, using gamma criteria of 3%, 3 mm.  
Large-volume scintillator detectors show promise for quick and accurate measurements of 
patient treatment fields for scanning proton beam systems. 

1. Introduction 
Proton radiation therapy can produce physical dose distributions that are superior to photon-based 
treatments because of the proton Bragg peak and the finite range of proton beams in tissue. Most new 
proton therapy centers employ magnetic beam scanning, which is capable of delivering intensity-
modulated proton therapy (IMPT) treatments. However, the complexity of IMPT treatments leads to 
challenges in treatment plan verification measurements. The steep dose gradients and finite range 
characteristic of IMPT fields necessitate the use of high-resolution detectors and require measurements 
at multiple depths in order to verify that the treatment plan is correctly delivered. As a result, patient-
specific quality assurance for IMPT is labor-intensive, and it is only practical to measure a subset of 
locations within each field. 

In recent years, interest has grown in the use of large-volume organic scintillator detectors for 
quality assurance of radiation therapy delivery systems and patient treatment plans. Detectors consisting 
of plastic or liquid scintillators imaged by CCD cameras have been developed and tested for applications 
including proton beam range measurement [1-4], proton beam scanning position [5], and measurement 
of photon-based patient treatment plans [6, 7]. Large-volume scintillator detectors are particularly 
promising for verification of IMPT patient plan delivery because of their high resolution, their speed, 
and their ability to image the entire dose distribution in a single measurement. All of these studies have 
either used a single CCD camera or a relatively small detector volume. 

The objective of this study was to evaluate the use of a large-volume scintillator detector 
employing two orthogonal cameras to measure dose distributions from scanning proton beam 
treatments. 
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2. Materials and Methods 
A large-volume liquid scintillator detector was constructed, comprising a cubic plastic tank filled with 
liquid scintillator, two CCD cameras, and a mirror. The inner dimensions of the scintillator tank were 
20x20x20 cm3, and the CCD cameras were placed 75 cm from two adjacent faces of the tank.  A mirror, 
oriented at 45 degrees relative to one face of the tank, was used to re-direct the light towards one of the 
cameras. The mirror enabled one camera to obtain a beam’s eye view of the proton beam without putting 
the camera’s sensitive electronics at risk from radiation damage (Figure 1). 

 

 
 

The images from the scintillator detector were processed to remove lens distortions, vignetting, 
blurring, and hot pixels and streaks caused by stray radiation striking the cameras [8]. The images were 
also corrected for refraction at the tank-air interface [4]. 

Individual energy layers of a scanning beam prostate treatment were delivered to the scintillator 
detector and measured with the CCD cameras. The timing structure of scanning beam delivery at the 
Proton Therapy Center - Houston includes rapid scanning at a given proton energy, followed by a 2-
second pause while the synchrotron energy is changed. Consequently, it is convenient to measure one 
energy layer at a time, allowing the camera data to be read out during the pause in beam delivery. The 
analysis presented herein is for the 161.6 MeV energy layer of a scanning beam prostate treatment plan.  
This energy was selected because it was in the center of the field, covering a large area and featuring an 
unusually-shaped dose distribution. Beam’s-eye view and lateral images of the dose distribution were 
obtained simultaneously during one single delivery of the field. 

The dose distribution was calculated using a Monte Carlo proton dose calculation system 
featuring a validated model of the Proton Therapy Center - Houston scanning beamline [9]. The 
calculated and measured dose distributions were normalized in the proximal buildup region for the 
lateral (depth-dose) view, and in a high-dose, low-gradient region in the beam’s eye view. The calculated 
dose distribution was compared with the measured light signal using profile comparisons and gamma 
analysis [10]. 

3. Results and Discussion 
On visual inspection, the Monte Carlo calculations and measured scintillation light show good 
agreement, with all features of the calculated dose distribution readily visible in the measured light 
(Figure 2). Line profiles indicate excellent agreement for the beam’s-eye view, while revealing a 
substantial quenching of the Bragg peak in the scintillator signal (Figure 3). Ionization quenching is 
caused by linear-energy dependence of the scintillator [11]. Methods have been developed to correct for 
quenching in scintillator detectors [12]. The beam’s-eye view is relatively unaffected by quenching, 
which decreases the intensity of the distribution without altering its shape. However, it is clear from the 
lateral camera view that quenching correction is necessary to obtain agreement in the depth direction. 

The agreement of the calculated and measured dose distributions was evaluated using gamma 
analysis.  Regions with 10% of the maximum dose or greater were evaluated. Figure 4 shows gamma 
maps for criteria of 3% dose difference and 3 mm distance to agreement. While the passing rate was 
above 90%, quenching led to very high gamma values in the Bragg peak in the lateral view. This 
illustrates the importance of quenching correction when evaluating in the depth direction. 

Figure 1. The large-volume liquid 
scintillator detector, including the tank and 
two cameras, in position on the patient couch 
of the Proton Therapy Center - Houston 
scanning gantry. 
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Gamma analysis was repeated using criteria of 2%, 2mm and 1%, 1mm. The passing rates are 
given in Table 1. At 3%, 3mm, the passing rates were very high, even for the lateral view without 
quenching correction. This suggests that 3%, 3 mm is too generous a criteria to effectively evaluate the 
accuracy of IMPT treatment plan delivery. While the individual gamma values in the Bragg peak were 
very high in the lateral view, they were confined to a small region, leading to passing rates similar to the 
beam’s-eye view. If the entire field, including all energy layers, was evaluated together, passing rates 
for the lateral view would likely drop due to the presence of multiple Bragg peaks. 

 

  

  
 

 
 

Figure 2. Beam’s-eye view (top) and 
lateral (bottom) projections of a single 
energy layer of a prostate treatment plan, 
calculated using a Monte Carlo dose 
engine (left) and measured with a liquid 
scintillator detector (right). 
 

Figure 3. Line profiles of the 
Monte Carlo-calculated (MC) 
and liquid scintillator-measured 
(LS) dose distributions for the 
beam’s-eye view (top) and lateral 
view (bottom). All profiles pass 
through the center of the images, 
with the exception of the bottom 
right figure, which pases 
throught he Bragg peak. 
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Figure 4. Gamma analysis maps (3%, 3 mm) comparing the measured and calculated doses for a single energy 
layer, including the beam’s-eye view (left) and a lateral view (right). 
 
 

Table 1. Gamma analysis passing rates for the beam’s-eye and lateral views. 

Gamma Analysis Criteria Beam’s eye view Lateral view 
3%, 3 mm 99.7% 92.5% 
2%, 2 mm 90.4% 88.7% 
1%, 1 mm 55.5% 66.5% 

 
4. Conclusions 
Patient-specific dose distributions measured with a large-volume liquid scintillator detector agreed well 
with calculated doses for a single energy layer of a scanned proton beam treatment plan, with the 
exception of ionization quenching in the Bragg peak. Gamma analysis is useful for comparing measured 
and calculated dose distributions, but the gamma criteria should be selected carefully to ensure the 
sensitivity of the test. It is convenient to measure one energy layer at a time using the scintillator detector, 
and separating the image data into individual energy layers opens the way for application of energy-
dependent quenching correction factors. Large-volume scintillator detectors show promise for quick and 
accurate measurements of patient treatment fields for scanning proton beam systems. 
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