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Abstract. The study of relativistic Coulomb systems in velocity space is prompted by the
fact that the study of Newtonian Kepler/Coulomb systems in velocity space, although less
familiar than the analytic solutions in ordinary space, provides a much simpler (also more
elegant) method. The simplicity and elegance of the velocity-space method derives from the
linearity of the velocity equation, which is the unique feature of 1/r interactions for Newtonian
and relativistic systems alike. The various types of possible trajectories are presented, their
properties deduced from the orbits in velocity space, accompanied with illustrations. In
particular, it is found that the orbits traversed in the relativistic velocity space (which is
hyperbolic (H3) rather than Euclidean) are epicyclic – circles whose centres also rotate – thus
the title.
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1. Introduction
The motivation for the present work stems from the success of studying Newtonian
Kepler/Coulomb (KC) 2-body systems in velocity space. This method was originally presented
by Hamilton in 1847 [1], and elaborated years later mainly by Maxwell [2] and Feynmann [3].
It discusses the dynamics of the system by following the orbit traced by the tip of the velocity
vector (termed hodograph by Hamilton). Although hardly known, the virtue of the hodograph
method is that its application to classical systems with 1/r potential provides, in a very simple
and elegant way, the full solution – all the necessary information regarding the dynamics of the
system, including spatial trajectories – just from the discussion in velocity space. Its merits
have been discusses on several occasions in the last decades [4, 5, 6, 7, 8, 9, 10].

The success of the hodograph method with the Newtonian KC systems triggers an interest in
its possible application to relativistic systems. The simplest extension of Newtonian KC systems
to relativity are relativistic Coulomb systems – the limit of EM 2-body systems when one of the
charges is much heavier than the other. Such systems were studied in the literature ([11, 12] and
references therein), generally following standard methods in configuration space. The present
work complements these studies, with a thorough discussion in relativistic velocity space.

1 Dedicated to the memory of J. D. Bekenstein – physicist, teacher and human
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The essentials of the hodograph method are presented in the following. It is worthwhile
to emphasize that the hodograph method, Newtonian and relativistic alike, is not a study in
Hamiltonian phase space {(x, p)}, but an analysis confined only to the velocities, making use
of the rotational symmetry of the system and the associated angular-momentum conservation
to transform spatial dependencies to velocity dependencies. The use of rotational symmetry in
this way is certainly an essential part of the method. Also it is to be noted that the relativistic
velocity space is a 3-D hyperboloid H3 embedded in a 1+3 pseudo-Euclidean space [13] (unlike
the 3-D Euclidean velocity space for Newtonian systems), and the results depend heavily on this
property.

The talk started with reviewing the classical KC hodograph method (see section 2), followed
with an account of the relativistic velocity space, the relativistic hodograph equations and
general properties of the hodographs in section 3. The main body of the talk then consists
of an illustrative account of the various particular cases.

A fuller account of the results is in preparation to be published elsewhere.
Notation. The convention c = 1 is used throughout, unless specified otherwise.

Events in Minkowski space-time are xµ =
(

x0, x1, x2, x3
)

, with metric tensor gµν =

diag (−1, 1, 1, 1) , µ, ν = 0, 1, 2, 3. For any 4-vectors aµ = (a0,~a) and bµ = (b0,~b), their inner

product is then a · b = −a0b0 + ~a ·~b.

2. The hodograph in classical Kepler/Coulomb systems
Classical KC systems are determined by the Hamiltonian

H (~r, ~p) =
~p 2

2m
+
κ

r
(1)

with the velocity equation of motion and the conserved angular momentum

m
d~v

dt
=

κ

r3
~r , ℓ = mr2

dθ

dt
. (2)

Coordinates x, y are assumed the for the plane of motion, with the conserved angular momentum
vector ~ℓ = ~r× ~p = ℓẑ perpendicular to it. Polar coordinates (r, θ) are also used, with the polar-
planar unit vectors

r̂ = cos θx̂+ sin θŷ , θ̂ = − sin θx̂+ cos θŷ (3)

satisfying

r̂ = −ẑ × θ̂ = −dθ̂
dθ

, θ̂ = ẑ × r̂ = dr̂

dθ
. (4)

Eliminating the time variable from both equations in (2) yields the velocity-angular equation

d~v

dθ
=
κ

ℓ
r̂ = −κ

ℓ

dθ̂

dθ
, (5)

with the general hodograph solution

~v (θ) = ~Bo −
κ

ℓ
θ̂ . (6)

The constant of integration ~Bo is known as Hamilton’s vector. The solution (6) describes a circle

(or at least a circular arc for unbound systems) in velocity space, centred around ~Bo with radius
|κ|/ℓ.
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Figure 1. Newtonian hodograph method : For spatial circular motion (right) the hodograph
(left) is simply a circle centred at the origin of the velocity space.
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Figure 2. Newtonian hodograph method : For spatial bound non-circular motion (elliptic –
right) the hodograph (left) is still a circle but shifted from the origin of the velocity space.

The spatial trajectory ~r (θ) = r (θ) r̂ (θ) derives from (6) using the relation

vθ = ~v · θ̂ = ℓ

mr
, (7)

from which also follows the energy equation, completely confined to velocity space variables,

m~v 2

2
+
κ

r
=
m~v 2

2
+
mκ

ℓ
vθ = E ′ . (8)

The nature of the solution depends on Hamilton’s vector. Substituting (6) in (8), the relation

Bo
2 =

2E ′

m
+
κ2

ℓ2
, (9)

follows. The minimal energy hodograph, with ~Bo = 0, is a canonical circle Co(ℓ) drawn by

the tips of the vectors ~vo (θ) = − (κ/ℓ) θ̂ centred at the origin of velocity space (Figure 1),

corresponding to circular spatial motion. With increasing energy ~Bo becomes non-zero, the
corresponding hodographs (6) remain circles with the same radius |κ| /ℓ but shifted from the

origin of velocity space by ~Bo (Figure 2 & 3), and the spatial orbits become conic sections.
In particular, for unbound systems the hodographs reduce the infinite spatial trajectory into a
finite circular arc (Figure 3). The endpoints correspond to vθ = 0⇔ r →∞, where ~v is tangent
to the hodograph.
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(a) Attraction.
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(b) Repulsion.

Figure 3. Newtonian hodograph method : For spatially unbound motion (right) the hodographs
(left) are finite circular arcs with the centre shifted from the origin of the velocity space. The
velocity vectors are tangent to the arcs at both ends.

The interested reader may find more details regarding the hodograph method in classical
systems in several publications [4, 5, 6, 7, 8, 9, 10].

3. The hodograph method in relativistic Coulomb systems
We use for the variables of the relativistic velocity space unit velocity (time-like future-directed)
4-vectors uµ = γ(v) (1, ~v), all satisfying u · u = −1. The relativistic velocity space is then the
space of all unit velocity 4-vectors, namely the 3-D unit hyperboloid (H3) [13]

Vrel ≡
{

uµ =
(

u0, ~u
)

|u0 =
√

1 + ~u 2
}

(10)

embedded in a 4-D pseudo-Euclidian space

E(1,3) =
{

wµ =
(

w0, ~w
)

∈ R
4|gµν = diag (−1, 1, 1, 1)

}

. (11)

Relativistic Coulomb systems are determined by the Hamiltonian

H (~r, ~p) =

√

~p 2 +m2 +
κ

r
(12)

The hodograph equations that follow from Hamilton’s equations may be formulated for all
wµ ∈ E(1,3) :

d~w

dθ
=
κ

ℓ
w0r̂ ,

dw0

dθ
=
κ

ℓ
~w · r̂ (13)
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and may be combined Lorentz-covariantly as

dwµ

dθ
=
κ

ℓ
Ωµ

νw
ν (14)

with the 4-D rotation matrix

Ωµ
ν =

(

0 r̂
r̂ 0

)

=









0 cos θ sin θ 0
cos θ 0 0 0
sin θ 0 0 0
0 0 0 0









(15)

Since Ωµν = −Ωνµ, it follows that for any two solutions wµ
1 (θ) , w

µ
2 (θ) of (14) in E

(1,3) the inner

product w1 · w2 is constant. In particular, any solution of the hodograph equations in E(1,3) is
of constant magnitude.

The hodograph equations induce pseudo-rotation in E(1,3), relative to an axis that itself
rotates with θ. The axis of rotation is identified as being along the vector

vµo =
(

1,−κ
ℓ
θ̂
)

(16)

It is easily verified that the vector (16) is preserved by (14). The fact that the classical basic

circle ~vo = − (κ/ℓ) θ̂ is the spatial component of vµo is very significant and will be discussed in
the following.

The hodographs of relativistic Coulomb systems are the solutions of (14) that are confined to
Vrel. The confinement is insured by the constant norm of the solution. Such general solutions,
depending on the total energy E and angular momentum ℓ as parameters, are denoted in the
following uµ (θ|E, ℓ). The principal significance of the axis vector (16) is then in determining
the energy integral, and thus the energy dependence of the hodograph :

−u · vo = u0 +
κ

ℓ
uθ =

E

m
(17)

(uθ = ~u · θ̂), so the energy is the (constant) projection of the kinematical momentum muµ on
the rotation axis.

It is fairly straight-forward to obtain the general energy dependence of the hodographs.
Consider the infinitesimal variation between two hodographs whose energy differ by δE,

δuµ = uµ (θ|E + δE, ℓ)− uµ (θ|E, ℓ) = ∂uµ

∂E
(θ|E, ℓ) δE (18)

The constraints u · vo = −E/m and u · u = −1 imply that

∂uµ

∂E
=
Euµ −mvµo
Λ2 (E, ℓ)

(19)

with

Λ2 (E, ℓ) = (Eu−mvo)2 = E2 +m2

(

κ2

ℓ2
− 1

)

. (20)

The vector ∂uµ/∂E is a space-like 4-vector, being orthogonal to uµ and tangent to Vrel at uµ,
therefore Λ2 (E, ℓ) = (∂u/∂E)−2 > 0. Integrating (19) as a 1st order ODE in E then yields the
generic form of the hodographs,

uµ (θ|E, ℓ) = wµ
o (θ|E, ℓ) + Λ (E, ℓ)nµo (θ|ℓ) (21)
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where

wµ
o (θ|E, ℓ) =















E
(

1− κ2
/

ℓ2
)

m
vµo (θ|ℓ) for ℓ 6= |κ|

m

2E
vµo (θ|ℓ) for ℓ = |κ|

, (22)

and nµo (θ|ℓ) is an energy-independent solution of the hodograph equation (14) (whose explicit
form, depending on κ/ℓ, will be given in the following), and also linearly independent of vµo .
Equation (21) demonstrates uµ (θ|E, ℓ) as the linear combination of an on-axis component wµ

o

and an off-axis component
Bµ (θ|E, ℓ) ≡ Λ (E, ℓ)nµo (θ|ℓ) . (23)

Both have constant magnitudes but changing directions. Being both solutions of the hodograph
equation (14), they also maintain constant relative angle. The combined motion is therefore
epicyclic, or precession – a rotation (Bµ) imposed on another rotation (wµ

o ). Bµ (θ|E, ℓ) will be
recognized in the following as the relativistic Hamilton vector.

Once the hodograph solution uµ (θ|E, ℓ) is available, it is also straight-forward to obtain the
corresponding spatial trajectory. In simile to (7), from the definition of the conserved angular
momentum ℓ = mruθ then follows

~r(θ) =
ℓ

muθ(θ)
r̂(θ) . (24)

In return, since r > 0, the requirement that uθ must be non-negative, uθ(θ) ≥ 0, with equality
possible only for unbound configurations at r →∞, determines the possible θ-range.

The ratio |κ|/ℓ determines the nature of the rotation axis, and consequently of the hodograph
itself. From the magnitude of the axis vector (16) we get

vo
2 =

κ2

ℓ2
− 1

ր
→
ց

ℓ > |κ| ⇔ vµo time-like
ℓ = |κ| ⇔ vµo light-like
ℓ < |κ| ⇔ vµo space-like

(25)

|κ|/ℓ is the magnitude of the spatial velocity on the basis circle – minimal energy circle – formed
by vµo , Co(ℓ) = {vµo (θ)} (see Figure 4). The relativistic requirement that particles’ velocities
cannot reach the velocity of light necessarily implies that the relativistic solution can have non-
relativistic limit only for time-like vµo . The following results split accordingly.

Figure 4. Relativistic hodograph method : The axis
vector vµo and the basis circle Co(ℓ) that it traverses,
relative to the velocity space Vrel hyperboloid, for the
3 possible cases : (i) left arrow – vµo time-like (for ℓ >
|κ|), if continued the vector punches the hyperboloid
into its interior; (ii) middle arrow – vµo light-like
(for ℓ = |κ|), if continued the vector approaches
the hyperboloid asymptotically; (iii) right arrow –
vµo space-like (for ℓ < |κ|), if continued the vector
recedes from the hyperboloid.

A note regarding the hodograph illustrations in the following : Since the relativistic
hodographs are 3-D curves, each of the cases discussed is illustrated with 3 projected views of a
segment of the hodograph – from above, from the side (horizontal) and an oblique-diagonal view
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– accompanied by an illustration of the corresponding spatial orbit. All these illustrations share
a common colour code : The axes with red, blue and green arrowhead correspond, respectively,
to ux, uy and u0 (the uz axis suppressed); the thick red line is the hodograph itself; the blue
circle is the basis circle Co (ℓ) = {vµo (θ)}; brown is the colour for the vector wµ

o and the circle
{wµ

o (θ)} it draws; the orange line is a cross-section of the velocity space hyperboloid Vrel in the
(ux = uy) -u

0 plane; and the black line is the Hamilton vector in each case. These colours cannot
be seen in the printed version, and the reader is advised to use the on-line or PDF versions. The
scales are different according to case.

4. Hodographs with Newtonian limit (ℓ > |κ|)
For ℓ > |κ| the solution of the hodograph equation (14) (with an arbitrary shift angle put to
zero) is

~u = Bo sin (βθ) r̂ +

[

− κE

mℓβ2
+
Bo

β
cos (βθ)

]

θ̂ ,

u0 =
E

m
− κ

ℓ
uθ =

E

mβ2
− κBo

βℓ
cos (βθ)

(26)

with the notations

β =

√

1− κ2

ℓ2
, Bo =

√

E2

m2β2
− 1 =

Λ (E, ℓ)

mβ
. (27)

It may be cast into the generic hodograph form (21) as

uµ (θ|E, ℓ) = E

mβ2
vµo +Bon

µ
1 (28)

with the vector

nµ1 (θ|ℓ) ≡
(

− κ

βℓ
cos (βθ) , sin (βθ) r̂ +

1

β
cos (βθ) θ̂

)

(29)

which is a space-like unit 4-vector, tangent to Vrel at uµo , satisfying n1 · n1 = 1 , uo · n1 = 0.
As is evident from Figure 4, the axis vector vµo , if continued, punches the velocity space

hyperboloid. The punching point is at uµo (θ|ℓ) = β−1vµo (θ|ℓ), which is the hodograph that
corresponds, for any given value of ℓ > |κ|, to the state of minimal energy with Emin = βm and
Bo = 0, describing a uniform circular orbit in Vrel and corresponding to spatial circular motion.

For E > βm, the vector wµ
o =

(

E/mβ2
)

vµo , being time-like, punching through the velocity
hyperboloid Vrel at uµo , describes a circle which lies horizontally within Vrel, with its centre right
above the origin of the embedding space E(1,3). Then, adding Bon

µ
1 at the tip of wµ

o (and
recalling that both are orthogonal as 4-vectors), the superposed vector reaches Vrel at uµ.

The representation (28) strongly resembles the Newtonian solution (6) : Not only is Bon
µ
1

superposed upon the uniformly rotating vector wµ
o , but in the nonrelativistic limit wµ

o → (1, ~vo)

and Bon
µ
1 →

(

0, ~Bo

)

, the latter thus reducing to the classical Hamilton vector. It seems therefore

appropriate to regard Bµ ≡ Bon
µ
1 as the relativistic Hamilton vector.

The vector Bµ is not constant, but rotates with constant magnitude. Its derivative tangent
to Vrel at uµo follows from

Dnµ1
dθ

=
dnµ1
dθ

−
(

n1 ·
duo
dθ

)

uµo = − κ2

βℓ2
nµ2 . (30)

where

nµ2 (θ|ℓ) =
(

κ

βℓ
sin (βθ) , cos (βθ) r̂ − 1

β
sin (βθ) θ̂

)

(31)
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(a) Hodograph – side view (b) Hodograph – oblique view

(c) Hodograph – above view

x

y

(d) Spatial orbit

Figure 5. Hodograph and spatial orbit for the bound state for vµo time-like (E = 0.6m,κ/ℓ =
−
√
3/2). The trajectory is closed (periodical) because in this particular case β = 1/2.

is another unit 4-vector tangent to Vrel at uµo , orthogonal to nµ1 (θ|ℓ) and satisfying a similar
equation,

Dnµ2
dθ

=
dnµ2
dθ

−
(

n2 ·
duo
dθ

)

uµo =
κ2

βℓ2
nµ1 . (32)

It follows that Bµ rotates uniformly around the axis of rotation.

4.1. Bound states

Bound states are obtained only for κ < 0 (attraction) and βm ≤ E < m. Extrema are obtained
when ur = 0, namely βθ = nπ , n ∈ Z, with

|κ|E
mℓβ2

− Bo

β
≤ uθ ≤

|κ|E
mℓβ2

+
Bo

β
(33)

uθ cannot vanish, thus determining, via the relation uθ = ℓ/mr, corresponding lower and upper
bounds for r :

|κ|E − ℓΛ
m2 − E2

≤ r ≤ |κ|E + ℓΛ

m2 − E2
. (34)

Since β 6= 1 the hodograph is not periodic 2π in θ, therefore not circular and the spatial
trajectories are rotating ellipses. Periodicity is obtained only when β is a rational number.

An exemplary hodograph, using the values E = 0.6m, κ/ℓ = −
√
3/2 (β = 0.5) together with

the corresponding spatial orbit obtained via (24) is demonstrated in Figure 5.
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(a) Hodograph – side view (b) Hodograph – oblique view

(c) Hodograph – above view

x

y

(d) Spatial orbit

Figure 6. Hodograph and spatial orbit for the attraction unbound state for vµo time-like
(E = 1.25m,κ/ℓ = −

√
3/2).

4.2. Unbound states

For unbound systems, with E ≥ m, the infinite limit r → ∞ corresponds, according to (24),
to uθ = 0. The infinite spatial trajectory turns into a finite-size orbit in velocity space,
another merit of the hodograph method. The finite angular range of the spatial trajectory
is −θ∞ < θ < θ∞, with the endpoints (at which uθ = 0) at

θ∞ =















ψ∞
β

κ > 0

π − ψ∞
β

κ < 0

, ψ∞ = sin−1

(√
E2 −m2

mBo

)

(35)

The distance of closest approach is also found from max (uθ) via (24),

rmin =
ℓΛ− κE
E2 −m2

(36)

With the numerical values E = 1.25m, κ/ℓ = ±
√
3/2 (β = 0.5), the angular endpoints are

at θ∞ = 1.79π [rad] for attraction (κ < 0) and at θ∞ = 0.212π [rad] for repulsion (κ > 0).
Exemplary hodographs with these values, together with the corresponding spatial trajectories,
are given in Figure 6 for attraction and Figure 7 for repulsion.
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(a) Hodograph – side view (b) Hodograph – oblique view

(c) Hodograph – above view

x

y

(d) Spatial orbit

Figure 7. Hodograph and spatial orbit for the repulsion unbound state for vµo time-like
(E = 1.25m,κ/ℓ =

√
3/2).

5. Hodographs for exclusively relativistic cases
The cases with ℓ ≤ |κ| don’t have a nonrelativistic counterpart, because that would imply, as
already pointed out, luminal or superluminal velocities in the Newtonian limit. The solutions for
ℓ = |κ| and ℓ < |κ| are presented separately because of the different mathematical expressions,
although the general features of the hodographs and the particle’s spatial trajectories are similar
in both cases.

5.1. Hodographs for ℓ = |κ|
The hodograph solution in the light-like case is (with an arbitrary shift angle put to zero)

~u =
ǫE

m
θr̂ − ǫ

(

E

2m
θ2 − E2 −m2

2mE

)

θ̂

u0 =
E2 +m2

2mE
+

E

2m
θ2

(37)

with ǫ = sign (κ). It may be cast in the form of the general hodograph solution (21) as

uµ (θ|E, ℓ) = m

2E
vµo (θ|E, ℓ) +

E

2m
nµ (θ|E, ℓ) (38)

with the vector
nµ =

(

1 + θ2, 2ǫθr̂ + ǫ
(

1− θ2
)

θ̂
)

. (39)

Here both vµo and nµ are light-like, vo · vo = n · n = 0, and n · vo = −2.
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(a) Hodograph – side view (b) Hodograph – oblique view

(c) Hodograph – above view

x

y

(d) Spatial orbit

Figure 8. Hodograph and spatial orbit for repulsion for vµo light-like (E = 1.25m, ℓ = κ).

For the angular ranges of the trajectory, determined by uθ > 0, we distinguish between the
case of repulsion (κ = ℓ and E > m) for which

−θ∞ < θ < θ∞ (40)

and two possible cases of attraction (κ = −ℓ)
{−∞ < θ <∞ when E < m

θ > θ∞ or θ < −θ∞ when E > m
(41)

where (in both (40) and (41))

θ∞ =

√
E2 −m2

E
. (42)

In the case of repulsion (κ = ℓ) the particle comes from infinity (r → ∞ , uθ = 0) to a
minimal distance at θ = 0

rmin =
ℓ

muθmax
=

2ℓE

E2 −m2
(43)

and then back again to infinity. The hodograph is a finite segment between uµ−∞ and uµ∞, where

uµ±∞ = uµ (±θ∞) =

(

E

m
,±
√
E2 −m2

m
r̂ (±θ∞)

)

(44)

For the particular choice E = 1.25m the endpoints are at θ∞ = 0.6 [rad]. The hodograph for
these values, together with the corresponding spatial trajectory, is given in Figure 8.
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(a) Hodograph – side view (b) Hodograph – oblique view

(c) Hodograph – above view

x

y

(d) Spatial orbit

Figure 9. Hodograph and spatial orbit for 1st attraction (unstable bound-like) case for vµo
light-like (E = 0.6m, ℓ = −κ).

The first attraction case (κ = −ℓ , E < m) resembles an unstable bound state : θ may get any
value without bounds (−∞ < θ <∞), but the particle is spatially bound within the maximum
distance from the centre

rmax =
ℓ

muθmin
=

2Eℓ

m2 − E2
(45)

The particle may start spatially at some distance from the centre of force, then move in a spiral
trajectory towards the centre. At the same time the hodograph starts close to the centre of
velocity space and spirals away to infinity (velocity space infinity). In the limit θ → ∞ then
also ~u → ∞ (|~v| → c), and the particle collapses into the centre of force. The hodograph with
the choice E = 0.6m, together with the corresponding spatial trajectory, is given in Figure 9.

In the second attraction case (κ = −ℓ , E > m) a situation similar to gravitational singularity
is encountered : Either (i) θ∞ < θ < ∞, then the hodograph ia a semi-infinite segment, the
particle arrives from spatial infinity (uθ = 0) and collapses into the centre of force for θ → ∞
(uθ → ∞, r → 0), or (ii) −∞ < θ < −θ∞, again a semi-infinite hodograph, and the particle
bursts out of the centre of force corresponding to θ → −∞ (uθ → ∞, r → 0) and escapes
to infinity (uθ → 0) (although the latter possibility is bizarre and unlikely, it is mentioned
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(a) Hodograph – side view (b) Hodograph – oblique view

(c) Hodograph – above view

x

y

(d) Spatial orbit

Figure 10. Hodograph and spatial orbit for 2nd attraction (collapse) case for vµo light-like
(E = 1.05m, ℓ = −κ).

because of its theoretical possibility). The hodograph with the choice E = 1.05m, for which
θ∞ = 0.01 [rad], together with the corresponding spatial trajectory, is given in Figure 10.

5.2. Hodographs for ℓ < |κ|
The hodograph solution in the space-like case (with an arbitrary shift angle put to zero) is

~u = −ǫAo sinh
(

β̄θ
)

r̂ +

[

κE

mℓβ̄2
− ǫAo

β̄
cosh

(

β̄θ
)

]

θ̂

u0 = − E

mβ̄2
+
|κ|Ao

β̄ℓ
cosh

(

β̄θ
)

(46)
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(a) Hodograph – side view (b) Hodograph – oblique view

(c) Hodograph – above view

x

y

(d) Spatial orbit

Figure 11. Hodograph and spatial orbit for repulsion for vµo space-like (E = 1.25m,κ/ℓ = 1.5).

where ǫ = sign (κ) and with the notations

β̄ =

√

κ2

ℓ2
− 1 , Ao =

√

E2

m2β̄2
+ 1 =

Λ (E, ℓ)

mβ̄
. (47)

As with the previous cases, it may be cast into the general hodograph form (21) as

uµ (θ|E, ℓ) = − E

mβ̄2
vµo +Aon

µ (48)

with

nµ (θ|ℓ) =
( |κ|
β̄ℓ

cosh
(

β̄θ
)

, ǫ sinh
(

β̄θ
)

r̂ − ǫ

β̄
cosh

(

β̄θ
)

θ̂

)

(49)

The rôles of vµo and nµ are now interchanged, since vµo is space-like in the present case and
nµ is a time-like unit 4-vector. The negative coefficient of vµo turns it up-side down, pointing
downwards rather than upwards. This behaviour is clear in Figures 11, 12 & 13. Although this
case doesn’t have a Newtonian counter-part, the composition in (48) suggests, in analogy with
(28), to regard the vector Aon

µ as the Hamilton vector in the present cases.
The angular ranges of the possible trajectories are, in principle, the same as in the former

case, given by (40) for repulsion and (41) for attraction, this time with

θ∞ =
1

β̄
cosh−1

(

κE

ℓΛ

)

. (50)
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(a) Hodograph – side view (b) Hodograph – oblique view

(c) Hodograph – above view

x

y

(d) Spatial orbit

Figure 12. Hodograph and spatial orbit for 1st attraction (unstable bound-like) case for vµo
space-like (E = 0.6m,κ/ℓ = −1.05).

In the case of repulsion (κ > ℓ and E > m), with the angular range −θ∞ < θ < θ∞, the particle
comes from spatial infinity to closest approach at θ = 0, with the minimal distance given in this
case by

rmin =
ℓ

muθmax
=
ℓΛ + κE

E2 −m2
(51)

and then back again to infinity. The hodograph is a finite segment between uµ−∞ and uµ∞, with
uµ±∞ given again by (44). For the particular choice E = 1.25m the endpoints are, again, at
θ∞ = 0.6 [rad]. An hodograph for these values and κ = 1.5ℓ, together with the corresponding
spatial trajectory, is given in Figure 11.

The first case of attraction in (41) (κ < −ℓ , E < m), with the angular range −∞ < θ <∞,
again resembles an unstable bound state with the maximum distance from the centre of force

rmax =
ℓ

muθmin
=
ℓΛ + |κ|E
m2 − E2

(52)
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(a) Hodograph – side view (b) Hodograph – oblique view

(c) Hodograph – above view

x

y

(d) Spatial orbit

Figure 13. Hodograph and spatial orbit for 2nd attraction (collapse) case for vµo space-like
(E = 1.25m,κ/ℓ = −1.2).

The particle starts spatially at some distance from the centre, then moves in a spiral trajectory
towards the centre, eventually collapsing into it. The hodograph starts close to the centre of
velocity space and spirals away to (velocity space) infinity. These hodographs are illustrated,
with the choice E = 0.6m and κ = −1.05ℓ, together with the corresponding spatial trajectory,
in Figure 12.

In the second attraction case (κ < −ℓ , E > m) then, again, as with the light-like case :
Either (i) θ∞ < θ <∞, then the hodograph is a semi-infinite segment, the particle arrives from
spatial infinity (uθ = 0) and collapses into the centre of force for θ → ∞ (uθ → ∞, r → 0), or
(ii) −∞ < θ < −θ∞, again a semi-infinite hodograph where the particle bursts out of the centre
of force corresponding to θ → −∞ (uθ → ∞, r → 0) and escapes to infinity (uθ → 0). These
hodographs are illustrated with the choice E = 1.25m, for which θ∞ = 0.6 [rad], and κ = −1.2ℓ,
together with the corresponding spatial trajectory, in Figure 13.
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6. Concluding remarks
The purpose of the talk was mainly to present the application of the generally non-familiar
hodograph method – studying the dynamics of a system in velocity space – as it applies to a
charged relativistic particle in Coulomb field. The hodograph method has the merit that when
applied to systems with 1/r potentials, Newtonian and relativistic alike, the velocity equations
are simply linear, providing a very straight-forward and elegant means to analyze the dynamics
of the system.

The Newtonian Kepler/Coulomb (KC) hodograph is always a circle, in general displaced from
the origin of velocity space, with a constant displacement that depends on the energy state and
determines the shape of the (conic section) spatial trajectory. For relativistic Coulomb systems
this structure is preserved, in principle – a basic circle associated with the minimum energy
state, uniformly displaced depending on the actual energy state. The unique relativistic feature
is that the displacement is itself rotating, so the whole phenomenon is of rotation superimposed
on rotation – precession on the velocity hyperboloid – thus the title with “back to epicycles”.

Results of the analysis were presented in the form of an excursion in the garden of the many
possible manifestations of the system, mostly in an illustrative way. Explicit distinction was
made between the cases which have a non-relativistic limit and others which are exclusively
relativistic, demonstrating the particular characteristics of each.

This analysis, whose details will be published elsewhere, is sought to assist attempts to
advance the solution of the relativistic EM 2-body problem : Unlike the Newtonian case, the
relativistic (non-quantum) EM 2-body problem doesn’t have, despite all the years, a satisfactory
solution. Some simple particular solutions have been found, mainly in the 60’s and the 70’s [15],
but since then no real advancement has been marked and a general solution is missing.

However, as is well known, the 1/r interaction allows Newtonian KC systems to enjoy a
very special and simple form of the Laplace-Runge-Lenz (LRL) symmetry, which is also directly
associated with the spatial trajectories being conic sections [16, 17, 18]. The combination of
rotational symmetry with the extra LRL symmetry provides the full solution for these systems
in configuration space. The application of the hodograph method to Newtonian KC systems,
providing the full solution in velocity space, may be demonstrated to be equivalent with the
application of the LRL symmetry in ordinary space. In particular, the vector displacing the
basic hodograph circle in velocity space, the Hamilton vector, is a constant vector directly
related to the constant LRL vector in the same system [9].

The hodograph method therefore displays what may be termed Hamilton’s symmetry,
complementary to the LRL symmetry. These symmetries are mathematically equivalent, but
physically they behave differently : the LRL symmetry transforms between states of same energy
but different internal angular momentum, while the Hamilton symmetry transforms between
states of same angular momentum while changing the energy.

The success of using the extra symmetries with Newtonian KC systems gives rise to the
hope that by studying the corresponding extra symmetries in relativistic EM systems a general
solution may be advanced. It is in this context that the present work has been performed.

Newtonian KC 2-body systems may be reduced to 1-body systems by transition to the centre-
of-mass (CM) reference frame. Such a simple and direct procedure is impossible, in general,
for relativistic 2-body systems because the interaction is not instantaneous. It is therefore
convenient to start with Coulomb systems, which may be regarded as the limit of EM 2-
body systems when one of the charges is much heavier than the other. The LRL symmetry in
relativistic Coulomb systems was already studied to some extent in recent years [12, 19, 20]. Here
we considered the other face of these internal symmetries – the relativistic Hamilton symmetry
– demonstrating its usefulness for Coulomb systems.

In futuristic view, an answer to the question How may non-instantaneous interactions be

handled on velocity space, especially in view of the fact that time doesn’t appear in the structure
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of the velocity space ? may provide a key to the whole issue of the 2-body EM problem. It is
hoped to come back to such questions soon.
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González-Villanueva A, Guillaumı́n-España E, Mart́ınez-Romero R P, Núñez-Yépez H N and Salas-Brito A
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