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Abstract. We use the Frenet frame to define and completely characterize “uniform
acceleration” in flat spacetime. We extend the definition to arbitrary curved spacetime and
provide an example in Schwarzschild spacetime.

1. Introduction

Einstein’s intuitive definition of uniform acceleration is “constant acceleration in the
instantaneously co-moving inertial frame.” This definition is found widely in the literature,
as early as [1] and [2], again in [3], and as recently as [4] and [5]. This definition is natural,
since the acceleration in the comoving frame is “precisely the push we feel when sitting in an
accelerating rocket” or automobile. Similarly, “by the equivalence principle, the gravitational
field in our terrestrial lab is the negative of our proper acceleration, our instantaneous rest frame
being an imagined Einstein cabin falling with acceleration g” ([6], page 71).

Historically, however, there have been many difficulties in capturing this definition
mathematically. Einstein considered the equation

F =
dp

dτ
, (1)

where F is the four-force, p is the four-momentum, and τ is proper time (see [7]). Unfortunately,
when F is a constant, as in a homogeneous gravitational field, equation (1) has no solution! This
follows from the fact that the four-velocity and the four-acceleration are orthogonal. This was
noticed by Planck, who wrote to Einstein about it. This, in turn, prompted Einstein to submit
a “correction” [8] to [9]. In the correction, he states that the “concept ‘uniformly accelerated’
needs further clarification.”

In [10, 11], working in flat spacetime, we considered motions which are solutions to

c
dλµ

(κ)

dτ
= Ωµ

νλ
ν
(κ), (2)

where {Kτ} is a one-parameter family, indexed by proper time τ , of instantaneously comoving
inertial frames, with orthonormal bases Λ(τ) = {λ(κ)(τ) : κ = 0, 1, 2, 3}, u(τ) = λ(0)(τ) is
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the four-velocity of the motion, and Λ−1ΩΛ is constant along the worldline. Equation (2)
is fully Lorentz covariant and admits four Lorentz-invariant classes of solutions. The class of
translational acceleration is the smallest Lorentz invariant class which includes hyperbolic motion.
In the null acceleration class, the worldline of the motion is cubic in the time. Rotational
acceleration covariantly extends pure rotational motion. General acceleration is obtained when
the translational component of the acceleration is parallel to the axis of rotation.

In [10, 11], we showed that all four classes of solutions to (2) have constant acceleration in
the comoving frame. At that time, however, it was not clear whether equation (2) captures
all uniformly accelerated motions. In other words, do there exist motions which have constant
acceleration in the instantaneously co-moving inertial frame but do not satisfy equation (2)?
In section 5, we settle this question by showing that, in flat spacetime, a motion has constant
acceleration in the co-moving frame if and only if it satisfies equation (2).

Having completely characterized uniform acceleration in flat spacetime, we show how to
extend the definition of uniform acceleration to curved spacetime. We do this with the help of
the so-called Frenet frame. While the authors of [10, 11, 12, 13] define uniform acceleration
with respect to an inertial frame, the Frenet frame is more suited for working on a manifold and
resembles the approach of Mashhoon [14]. It was already shown in [10] that in flat spacetime,
the inertial frame and the Frenet frame approaches are, in some sense, equivalent.

The Frenet frame or Frenet basis at each point along a smooth future-pointing timelike curve
is an orthonormal basis of four-vectors belonging to the tangent space at the point in question.
In section 3, working in arbitrary curved spacetime, we provide the explicit construction of the
Frenet frame and the derivation of the Frenet equations. We show in section 4 that the Frenet
equations extend the geodesic equation. Despite the fact that the Frenet equations are coupled,
we show how to parallel transport the individual vectors of the Frenet basis. A detailed example
in Schwarzschild spacetime is provided in section 6.

Basic definitions and notation are established in section 2. A discussion appears in section
7. Sections 3 and 4 follow closely the development in [13]. Most of section 6 appeared in [15].

2. Notation

Consider a time-orientable four-dimensional differential manifoldM endowed with a metric
gµν of Lorentzian signature (+,−,−,−). A tangent vector v at a given point of M is timelike
if g(v, v) > 0, spacelike if g(v, v) < 0, and null if g(v, v) = 0. Let γ : I → M, I an open
interval of R, be a smooth future-pointing timelike curve, parameterized by the arclength
ds =

√
gµνdxµdxν . Note that ds = cdτ . Moreover, under a change of coordinates xµ → xµ

′

, we
have ds = ds′. In a local system of coordinates xµ, the curve γ(s) is described by a set of four
functions xµ(s). We assume that the metric satisfies the metricity condition dgµν/ds = 0.

At every point of γ, the four-velocity uµ is defined by

uµ =
dxµ

ds
(3)

and has unit length:
u2 = gµνu

µuν = 1. (4)

The covariant derivative D
ds
of a four-vector wµ along γ(s) is defined [16] by

Dwµ

ds
=

dwµ

ds
+ Γµ

ανw
αuν , (5)

where the Christoffel symbols Γµ
αν are defined by

Γµ
αν =

1

2
gρµ(gρα,ν + gρν,α − gαν,ρ). (6)
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For ease of notation, we often write ẇ instead of Dw
ds
.

The four-acceleration aµ is the covariant derivative of the four-velocity:

a = c2u̇. (7)

Differentiating u2 = 1, we have
u̇ · u = 0, (8)

meaning that the four-acceleration is orthogonal to the four-velocity. Since the four-velocity is
timelike, the four-acceleration is spacelike.

The plane of simultaneity or the restspace at the point γ(s) is the linear subspace of four-
vectors w such that w · u(s) = 0.

3. The Frenet Frame

We now construct the Frenet basis {λ(0), λ(1), λ(2), λ(3)}, λ(α) = λ(α)(s), of the tangent
space at the point γ(s). The construction uses covariant differentiation and the Gram-Schmidt
orthonormalization procedure. In the event that the Gram-Schmidt process breaks down, we
are free to complete the orthonormal basis arbitrarily. The orthonormality condition means that

λ(α) · λ(β) = ηαβ , (9)

where ηαβ is the Minkowski metric diag(1,−1,−1,−1). Differentiating (9), we obtain

λ̇(α) · λ(β) = −λ(α) · λ̇(β). (10)

In particular,
λ(α) · λ̇(α) = 0. (11)

First, let λ(0)(s) = u(s). The four-acceleration a = u̇ is spacelike and orthogonal to the

four-velocity u. We assume that u̇ 6= 0 for all s. Set κ =
√
−a2 and define

λ(1)(s) =
a(s)

κ
. (12)

The unit vector λ(1)(s) gives the direction of the four-acceleration. The scalar κ(s) is the
magnitude of the four-acceleration and is also called the curve’s curvature. From (12), we
trivially get the first Frenet equation

c2λ̇(0) = κλ(1). (13)

Using the Gram-Schmidt procedure, (9) and (10), we construct a vector v(2) which is
orthogonal to both λ(0) and λ(1):

v(2) = c2λ̇(1) − (c2λ̇(1) · λ(0))λ(0) = c2λ̇(1) − κλ(0). (14)

Let τ1 =
√
−(v(2))2 > 0, and define

λ(2) =
v(2)

τ1
. (15)

Then, from (14), we have
c2λ̇(1) = κλ(0) + τ1λ(2). (16)
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Similarly, we construct a vector v(3) orthogonal to λ(0), λ(1) and λ(2):

v(3) = c2λ̇(2) − (c2λ̇(2) · λ(0))λ(0) + (c2λ̇(2) · λ(1))λ(1). (17)

Now (10), (13) and (9) imply that λ̇(2)·λ(0) = 0, while (10), (16) and (9) imply that λ̇(2)·λ(1) = τ1.

Let τ2 =
√
−(v(3))2 > 0, and define

λ(3) =
v(3)

τ2
. (18)

From (17) we now obtain
c2λ̇(2) = −τ1λ(1) + τ2λ(3). (19)

Finally, using (13), (16), (10) and (11), we get that λ̇(3)is parallel to λ(2). Then, using (10), (19)

and (9), we get λ(2) · λ̇(3) = τ2. Hence,

c2λ̇(3) = −τ2λ(2). (20)

The λ(α)’s constitute the Frenet basis of the trajectory, and the equations (13), (16), (19)
and (20) are called the Frenet equations. They are a system of coupled ordinary differential
equations and can be written compactly as

c2λ̇(α)(s) = λ(β)(s)A
(β)
(α)(s), (21)

where

A
(β)
(α)(s) =




0 κ(s) 0 0
κ(s) 0 −τ1(s) 0
0 τ1(s) 0 −τ2(s)
0 0 τ2(s) 0


 . (22)

Note that A(s) is a matrix of scalars. Under a change of coordinates xµ → xµ
′

, we have ds′ = ds,
and therefore, κ(s′) = κ(s) and likewise for τ1(s) and τ2(s). Thus, its two indices are coordinate-
free, so we place them in parentheses. We call A(s) the acceleration matrix. Note that the lower
index on the λ’s is a label and not a tensorial index.

The physical meaning of κ(s) and τ1(s), τ2(s) is as follows. An observer on γ(s) experiences
linear acceleration of magnitude κ(s) in the direction of λ(1). The magnitude and the direction
of this acceleration can be measured by an accelerometer carried by an observer moving along
γ(s). The torsion is defined by a 3D vector ω = −τ2λ(1) − τ1λ(3), which can be measured by
the precession of gyroscopes carried by the observer. The vector ω is the axis of the observer’s
rotational acceleration, with magnitude

√
τ21 + τ22 . τ2 is the component of the torsion parallel

to the direction of linear acceleration, while τ1 is the component in the orthogonal direction.
The Frenet basis and κ, τ1 and τ2 are definable locally and are completely determined by the
trajectory.

If κ is constant and τ1 = 0, then equations (13) and (16) imply that

λ̈(0) =
κ2

c4
λ(0), (23)

which is equivalent to [17], equation (6). Equation (23) describes hyperbolic motion. However,
to obtain a fully Lorentz covariant theory, we cannot assume that τ1 = 0. This is because
hyperbolic motion itself is not covariant, as shown in [11, 12]. Note that equation (23) is third
order in the coordinates xµ. For a unique solution, one need only specify the initial position
γ(0), the initial four-velocity u(0), and the initial linear acceleration a(0).
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4. Analysis of the Frenet equations

Our first goal is to show that the Frenet equations extend the geodesic equation

duµ(s)

ds
+ Γµ

σρu
σ(s)uρ(s) = 0. (24)

First, use (5), (21) and λ(0)(s) = u(s) to write the Frenet equations as

c2
dλµ

(α)(s)

ds
+ c2Γµ

σρλ
σ
(α)(s)λ

ρ

(0)(s) = λµ

(β)(s)A
(β)
(α). (25)

Now we show that equation (25) extends the geodesic equation. Along a geodesic, there is
zero acceleration, so A ≡ 0. Thus, (25) becomes

dλµ

(α)(s)

ds
+ Γµ

σρλ
σ
(α)(s)λ

ρ

(0)(s) = 0. (26)

Setting α = 0 and using λ(0)(s) = u(s), we obtain the geodesic equation (24).
We now show how to parallel transport the Frenet basis vectors λ(κ). Recall that a four-vector

wµ is said to be parallel transported along γ(s) by the Levi-Civita connection if

Dwµ

ds
= 0. (27)

If the four-acceleration a(s) = c2Du(s)
ds

is nonzero, then the four-velocity u is not parallel
transported along γ(s) by the Levi-Civita connection. This means that the Frenet basis is not
parallel transported. The covariant derivative along the curve does not preserve the restspaces
of an accelerating particle.

A more appropriate transport is defined using the generalized Fermi-Walker derivative

(GFW ) D̂wµ

ds
of a four vector wµ (see [16], [17]):

D̂wµ

ds
= c2

Dwµ

ds
− Ωµ

νw
ν , (28)

where Ωµν is a rank 2 tensor, defined along γ(s). Hehl [16] shows that the metric compatibility
condition, which follows from the transport of the orthonormal basis, implies that Ωµν is
antisymmetric.

Let Λ(s) be the 4 × 4 matrix whose ith column consists of the components of the vector
λ(i)(s) in the local basis. Then the Frenet equations (21) can be written as

c2
DΛ(s)

ds
= Λ(s)A(s). (29)

In order to ensure parallel transport of the Frenet basis vectors λ(κ), we choose

Ω(s) = Λ(s)A(s)Λ−1(s). (30)

Ω(s) is an antisymmetric tensor with the same Lorentz invariants as the matrix A(s). In fact,
Ω(s) is the acceleration matrix A(s) computed in the initial comoving frame. Hence, we refer to
Ω(s) as the pullback of the acceleration matrix A(s) along the worldline. Multiplying the right
side of (29) by Λ−1(s)Λ(s), we obtain

c2
DΛ(s)

ds
= Ω(s)Λ(s). (31)



6

1234567890

IARD10  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 845 (2017) 012008  doi :10.1088/1742-6596/845/1/012008

Clearly, the Frenet basis is GFW parallel transported. Using (31) and (28), we have

D̂λ(κ)(s)

ds
= c2

Dλ(κ)(s)

ds
− Ω(s)λ(κ)(s) = 0. (32)

In equation (29), the matrix Λ is multiplied by A on the right. This means that the time
evolution of each basis vector depends on all of the basis vectors. However, to have parallel
transport, each basis vector must be transported without referring to the other basis vectors.
This explains why, in equation (29), Λ is multiplied by Ω on the left.

5. Uniform Acceleration

Einstein’s intuitive definition of uniform acceleration is “constant acceleration in
the instantaneously co-moving inertial frame.” Historically, however, there have been many
difficulties in capturing this definition mathematically. For more details, see [12].

In [10, 11], working in flat spacetime, we considered motions which are solutions to

c
dλµ

(κ)

dτ
= Ωµ

νλ
ν
(κ), (33)

where {Kτ} is a one-parameter family, indexed by proper time τ , of instantaneously comoving
inertial frames, with orthonormal bases Λ(τ) = {λ(κ)(τ) : κ = 0, 1, 2, 3}, u(τ) = λ(0)(τ) is the

four-velocity of the motion, and Λ−1ΩΛ is constant along the worldline.
In the 1 + 3 decomposition of flat spacetime, the tensor Ω of equation (33) has the form

Ωµ
ν =




0 gT

g −cB


 . (34)

where g is a 3D vector with physical dimension of acceleration, ω is a 3D vector with physical
dimension 1/time, the superscript T denotes matrix transposition, and, for any 3D vector
ω = (ω1, ω2, ω3),

B = εijkω
k,

where εijk is the Levi-Civita tensor. The factor c in Ω provides the necessary physical dimension
of acceleration. The vector g represents linear acceleration. If ω = 0, we obtain constant linear
acceleration in a fixed direction, otherwise known as hyperbolic motion. The vector ω is the
angular velocity of the motion. If g = 0, we obtain pure rotational motion with constant
angular velocity.

In [10, 11], we showed that the solutions to (33) have constant acceleration in the comoving
frame. At that time, however, it was not clear whether equation (33) captures all uniformly
accelerated motions. In other words, do there exist motions which have constant acceleration in
the instantaneously co-moving inertial frame but do not satisfy equation (33)? With the help
of the Frenet frame, we settle this issue.

Theorem 1. In flat spacetime with proper time τ , the following are equivalent:

(i) The future-pointing, timelike worldline γ(τ) has constant acceleration in the instantaneously
co-moving inertial frame,

(ii) There exist an antisymmetric tensor Ωµν(τ) and a one-parameter family {Kτ} of
instantaneously comoving inertial frames, with orthonormal bases Λ(τ) = {λ(κ)(τ)} such
that

(a) Λ−1ΩΛ is constant with respect to τ ,
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(b) c d
dτ
λµ

(κ)(τ) = Ωµ
νλν

(κ)(τ),

(c) u(τ) = λ(0)(τ) is the four-velocity of γ(τ).

The implication (ii)⇒ (i) was proven in [10, 11].
To prove (i) ⇒ (ii), let γ(τ) be the worldline of a motion with constant acceleration in the

instantaneously co-moving inertial frame. Let Λ(τ) and A(τ) be as in the construction of section
3. Since the acceleration is constant in the co-moving frame, we have A(s) ≡ A. Using (29)
and ds = cdτ , and noting that covariant derivatives becomes normal derivatives, since we are
working in flat spacetime, we have

c
dΛ(τ)

dτ
= Λ(τ)A. (35)

Then (a), (b) and (c) of (ii) are satisfied with

λµ

(κ) = Λµ

(κ) and Ωµ
ν = Λµ

(α)A
(α)
(β)(Λ

−1)(β)ν . (36)

This proves the theorem.
Theorem 1, which is valid in flat spacetime, motivates the following extension of the definition

of uniform acceleration to curved spacetime.

Definition 1. Let γ(s) be a timelike curve, with acceleration matrix A(s). We say that γ
represents uniformly accelerated motion if

dA(s)

ds
= 0. (37)

We turn now to an example of uniform acceleration in the Schwarzschild metric.

6. Uniform Acceleration in Schwarzschild spacetime

In this section, we provide an example of uniform acceleration in Schwarzschild spacetime, with
the metric

ds2 =
(
1− rs

r

)
c2dt2 −

(
1− rs

r

)
−1

dr2 − r2dΩ2, (38)

where rs is the Schwarzschild radius and dΩ2 = dθ2+ sin2θdϕ2. Here θ is the colatitude (= the
angle from north) and ϕ is longitude.

The known (see [18, 19]) nonzero Christoffel symbols are

Γ 0
01 =

rs
2r(r − rs)

, Γ 1
00 =

rs
2r2

(
1− rs

r

)
, Γ 1

11 =
−rs

2r(r − rs)

Γ 1
22 = rs − r , Γ 1

33 = (rs − r) sin2 θ , Γ 2
12 =

1

r

Γ 2
33 = − sin θ cos θ , Γ 3

13 =
1

r
, Γ 3

23 =
cos θ

sin θ
. (39)

For our example, we consider motion in the (t, r) plane and set θ = π
2 , ϕ = 0. Then

Γ 1
33 = rs − r , Γ 2

33 = Γ 3
23 = 0.

Let the acceleration matrix A =




0 κ 0 0
κ 0 0 0
0 0 0 0
0 0 0 0


, representing hyperbolic motion in the

radial direction. Equation (25), with α = 0, µ = 2, is
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c2
dλ2

(0)

ds
+
2c2

r
λ1
(0)λ

2
(0) = κλ2

(1).

Since θ = π
2 , we have λ2

(0) = dθ
ds

= 0. Thus, λ2
(1) = 0. Similarly, since ϕ = 0, we have

λ3
(0) = λ3

(1) = 0.

Since the λ(α)’s form an orthonormal basis, we have

(
1− rs

r

)
λ0
(0)λ

0
(1) −

(
1− rs

r

)
−1

λ1
(0)λ

1
(1) = 0, (40)

(
1− rs

r

)(
λ0
(0)

)2
−

(
1− rs

r

)
−1 (

λ1
(0)

)2
= 1, (41)

(
1− rs

r

)(
λ0
(1)

)2
−

(
1− rs

r

)
−1 (

λ1
(1)

)2
= −1. (42)

Next, we write λ0
(0), λ

0
(1), λ

1
(1) in terms of λ

1
(0). From (41), we get

λ0
(0) =

√(
r

r − rs

)(
1 +

r

r − rs

(
λ1
(0)

)2
)
. (43)

From (42), we get

λ0
(1) =

√(
r

r − rs

)(
−1 + r

r − rs

(
λ1
(1)

)2
)
. (44)

Substituting (43) and (44) into (40), we get

λ1
(1) =

√
1− rs

r
+

(
λ1
(0)

)2
. (45)

Substituting (45) into (44) yields

λ0
(1) =

r

r − rs
λ1
(0). (46)

Equation (25), with α = 0, µ = 1, is, after dividing by c2,

dλ1
(0)

ds
+

rs
2r2

(
1− rs

r

)(
λ0
(0)

)2
− rs
2r(r − rs)

(
λ1
(0)

)2
=

κ

c2
λ1
(1). (47)

Substituting (43) and (45) into this equation, we obtain





dλ1
(0)

ds
+ rs

2r2
− κ

c2

√
1− rs

r
+

(
λ1
(0)

)2
= 0

dr
ds
= λ1

(0)





, (48)

or, equivalently,

d2r

ds2
+

rs
2r2

− κ

c2

√

1− rs
r
+

(
dr

ds

)2

= 0. (49)
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In the particular case κ = 0, then, writing ṙ for dr
ds
and r̈ for d2r

ds2
, equation (49) becomes

r̈ +
rs
2r2

= 0. (50)

Multiplying by 2ṙ, we obtain

2ṙr̈ +
ṙrs
r2

= 0. (51)

Integrating, we obtain

ṙ2 − rs
r
= constant. (52)

The quantity E = ṙ2− rs
r
is the total dimensionless energy. It is the total energy divided by the

maximal kinetic energy mc2

2 . Hence, the total energy is conserved, as expected along a geodesic.
We consider now the general case of equation (49) (κ 6= 0). Differentiating E by t, we have

Ė = 2ṙr̈ +
ṙrs
r2

. (53)

Dividing by 2ṙ and using (49), we obtain

Ė

2ṙ
=

κ

c2

√
1 + E. (54)

Separating variables and integrating, we have

√
1 + E =

κr

c2
+ C, (55)

where C is a constant of integration. Squaring and using the definition of E, we obtain

ṙ2 =
r
(
κr
c2
+ C

)2
+ rs − r

r
. (56)

We now show that there are no bounded orbits. Define

f(r) = r
(κr
c2

+ C
)2

+ rs − r. (57)

To have a bounded orbit, say between r1 and r2, with 0 < r1 < r2, we must have f(r1) =
f(r2) = 0 and f(r) > 0 for r1 < r < r2. However, f(r) is a cubic polynomial, f(0) > 0 and
limr→∞ f(r) = +∞. This implies that f has at most two zeroes for r > 0 and between these
two zeroes, f(r) < 0. Hence, there are no bounded orbits.

Figure 1 compares solutions for r(s) in flat spacetime and Schwarzschild spacetime. Here, the
Schwarzschild radius rs = 3000 km. In order to see the difference between the trajectories in flat
spacetime and Schwarzschild spacetime, we must use relatively small values of r, since, for large
r, the Schwarzschild metric is approximately flat. Thus, we take r(0) = 2rs. Similarly, we use
a high acceleration of κ = 8× 1016 ms−2. Otherwise, the trajectories will be indistinguishable.
The need for high acceleration can be seen from the first equation of (48), in which κ is divided
by c2. We take the initial velocity to be ṙ(0) = 0.

For small values of s, the curves are indistinguishable. For larger s, the curves start to
separate, reflecting the difference between flat and curved spacetime. Comparing curves (b) and
(d) (respectively, (c) and (e)), we see that an object in Schwarzschild spacetime moves away from
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(respectively, toward) the attracting mass more slowly than in flat spacetime. Nevertheless, the
trajectories are asymptotically parallel. To check this, first use (56) to compute

lim
r→∞

ṙ

r
=

√
r
(
κr
c2
+ C

)2
+ rs − r

r3
=

κ

c2
. (58)

For the flat spacetime solution, we have

r(s) =
c2

κ

(
cosh

(κs
c2

)
− 1

)
+ 2rs. (59)

Hence, ṙ(s) = sinh
(
κs
c2

)
. Since limx→∞ tanh(x) = 1, we have

lim
s→∞

ṙ

r
=

κ

c2
. (60)
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Figure 1. Solutions for r(s), with rs = 3000m, r(0) = 2rs, ṙ(0) = 0 : (a) κ = 0 (a geodesic) (b)
κ = 8× 1016ms−2, compared to flat spacetime solution (d), (c) κ = −8× 1016ms−2, compared
to flat spacetime solution (e)

7. Discussion

Uniformly accelerated systems are important because only in these systems can all of the
rest clocks in the system be synchronized to each other. It was shown in [13] that the rate of a
rest clock in a uniformly accelerated system is constant in time but varies with position within
the system. The time dilation between rest clocks at different positions can be explained by
the difference in the potential energy between the two positions. This is similar to the known
“gravitational time shift” for inertial systems with gravity, which, by the Equivalence Principle,
are equivalent to accelerating systems. In a uniformly accelerated system, we may synchronize
two rest clocks by sending two light signals back and forth between the two clocks. The first
light signal is used to synchronize the common t = 0, and the second light signal is used to
adjust for the different rates of the clocks. However, once the rates have been synchronized,
they will remain synchronized, because the rate of each clock is constant. If the system is not
uniformly accelerated, then, in general, the rate of each rest clock changes with time. Therefore,
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it will not be enough to synchronize the rates of two clocks only once since their relative time
dilation changes with time.

We plan to extend the example in Schwarzschild spacetime to include planetary motion. One
may consider the gravitational pull of, say, Jupiter, on the Earth to be uniform acceleration. A
solution of our equations would then predict the perturbation on the Earth’s orbit caused by
Jupiter. Alternatively, one could predict the perturbation of the Moon’s orbit around the Earth
caused by the Sun.

Our theory of uniform acceleration may prove useful in both Relativistic Newtonian Dynamics
(RND) [20, 21, 22] and Extended Relativity (ER) [23, 24]. The dynamics of Special Relativity
describes the influence of velocity, or kinetic energy, on spacetime. RND, on the other hand,
modifies Newtonian dynamics by considering the effect on spacetime due to potential energy.
This theory has successfully and accurately predicted the precession of Mercury without General
Relativity [20]. RND also handles the trajectories of binary stars and accurately predicts the
Hulse-Taylor pulsar’s periastron advance [22]. Currently, however, we have only the three-
dimensional version of RND. We plan to apply the ideas of [12] to derive a fully Lorentz covariant
4D version.

ER extends Special Relativity by examining the influence of high accelerations on relativistic
dynamics. ER has been successfully applied to both the hydrogen atom [23] and the harmonic
oscillator [24]. Thus far, however, only one-dimensional acceleration has been treated. The next
step is to extend ER to full Lorentz covariance by treating first the case of rotations.

Rotations, even at constant angular velocity, are not trivial. The search for the spacetime
transformations between a disk, rotating with constant angular velocity, and a (non-rotating)
inertial lab frame has a long and rich history, dating back to Einstein and continuing to the
present day. The recent book [25] makes it clear that there is still no universally accepted
theory. More specifically, as pointed out in [26], a good and complete theory must have a global
metric and a unique time at each event. There is no such theory known today which also agrees
with recent experiments [27, 28]. Moreover, many of the current approaches make arbitrary
assumptions about the form of the transformation of the radial coordinate. There is no theory
today which derives the transformations from first principles.

We are currently applying our theory of uniform acceleration to the case of rotations. We hope
to obtain explicit spacetime transformations using only the basic tenets of Special Relativity,
the inherent symmetries of the problem, and the results of [10, 11, 13]. We conjecture that we
can avoid both the time gap and the horizon problem.

In [10, 11, 13], working in flat spacetime, we derived spacetime transformations, velocity
transformations, and acceleration transformations from a uniformly accelerated system to an
inertial frame. We plan to extend these transformations to curved spacetime. We also want to
determine whether the spacetime transformations between uniformly accelerated systems form
a group. If yes, we want to characterize this group, which will be an extension of the Lorentz
group.
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