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Abstract.

Besides the tidal degrees of freedom of Einstein general relativity (GR) (namely the two
polarizations of gravitational waves after linearization of the theory) there are the inertial gauge
ones connected with the freedom in the choice of the 4-coordinates of the space-time, i.e. in the
choice of the notions of time and 3-space (the 3+1 splitting of space-time) and in their use to
define a non-inertial frame (the inertial ones being forbidden by the equivalence principle) by
means of a set of conventions for the relativistic metrology of the space-time (like the GPS ones
near the Earth).

The canonical York basis of canonical ADM gravity allows us to identify the Hamiltonian
inertial gauge variables in globally hyperbolic asymptotically Minkowskian space-times without
super-translations and to define the family of non-harmonic Schwinger time gauges. In these 3+1
splittings of space-time the freedom in the choice of time (the problem of clock synchronization)
is described by the inertial gauge variable York time (the trace of the extrinsic curvature of
the instantaneous 3-spaces). This inertial gauge freedom and the non-Euclidean nature of the
instantaneous 3-spaces required by the equivalence principle need to be incorporated as metrical
conventions in a relativistic suitable extension of the existing (essentially Galilean) ICRS celestial
reference system.

In this paper I make a short review of the existing possibilities to explain the presence
of dark matter (or at least of part of it) as a relativistic inertial effect induced by the non-
Euclidean nature of the 3-spaces. After a Hamiltonian Post-Minkowskian (HPM) linearization
of canonical ADM tetrad gravity with particles, having equal inertial and gravitational masses,
as matter, followed by a Post-Newtonian (PN) expansion, we find that the Newtonian equality
of inertial and gravitational masses breaks down and that the inertial gauge York time produces
an increment of the inertial masses explaining at least part of what is called dark matter in all
its astrophysical signatures.

1. Canonical ADM Tetrad gravity

The results presented in this review derive from the systematic study of the existing Hamiltonian
formulations of metric and tetrad ADM gravity ' in globally hyperbolic, topologically trivial,
asymptotically Minkowskian space-times without super-translations and Killing symmetries done
in the papers [1, 2, 3, 4, 5, 6, 7, 8] (see Refs. [9] for full reviews and Ref.[10] for the inclusion
of Killing symmetries). In these papers the matter consists of electrically charged positive-
energy scalar particles plus the electro-magnetic field. The canonical theory takes into account
all the aspects of Dirac’s theory of constraints [11, 12, 13, 14], in particular the use of the

1 Tetrad gravity is needed for the description of fermion fields.
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Shanmugadhasan canonical transformation [6, 13, 15] to find canonical bases adapted to the
constraints .

In this class of space-times at spatial infinity there is an asymptotic ADM Poincaré group [16],
which becomes the special relativistic Poincaré group of the matter present in the space-time
(this is an important condition for the inclusion of particle physics, where elementary particles
are irreducible representations of this group) in the limit of vanishing Newton constant (G = 0).
The canonical Hamiltonian is the weak ADM energy 2, so that there is no frozen picture like
in the family of spatially compact without boundary space-times considered in loop quantum
gravity, where the Dirac Hamiltonian is a combination of constraints because the canonical
Hamiltonian vanishes.

Since the equivalence principle forbids the existence of global inertial frames, we had to define
global non-inertial frames (with instantaneous non-Euclidean 3-spaces with synchronized clocks)
in this class of space-times by adapting to GR the theory of global non-inertial frames in
Minkowski space-time developed in Ref. [17] and applied to relativistic atomic physics in Ref.[18].

According to the 3+1 point of view one gives the world-line of a time-like observer and an
admissible 3+1 splitting of the space-time, i.e. a nice foliation whose leaves are instantaneous
3-spaces. Lorentz-scalar observer-dependent radar 4-coordinates o = (1;0") are used: 7 is an
arbitrary increasing function of the observer proper time and ¢” are curvilinear 3-coordinates on
the 3-spaces ¥, (diffeomorphic to R?) with the observer as origin. The inverse transformation
o ot = zH(7,0") defines the embeddings of the 3-spaces ¥, into the space-time and the
induced 4-metric is gap[z(1, 0")] = [24 2%](7,0") g (1, 0"), where 2% = 9 2 /0 0 (the signature
of the 4-metric is € = 41 according to either the particle physics € = 1 or the general relativity
¢ = —1 convention).

While the 4-vectors 21 (7, 0") are tangent to X, so that the unit normal I¥(7, o") is proportional
to e'qpy [21 226 z3)(7,0"), we have z2F(r,0") = [NI* + N" 2/'|(1,0") (N(1,0") = €[zF1,](7,07)
and N, (7,0") = —€ grr(7,0") are the lapse and shift functions).

The foliation is nice and admissible if it satisfies the conditions:

1) N(r,0") > 0 in every point of ¥, (the 3-spaces never intersect, avoiding the coordinate
singularity of Fermi coordinates);

2) €4g;(1,07) > 0, so to avoid the coordinate singularity of the rotating disk, and with the
positive-definite 3-metric 3g,.s(1,0%) = —€ 1g,5(7, %) having three positive eigenvalues (as shown
in Ref.[17] these are the Mgller conditions);

3) all the 3-spaces 3, must tend to the same space-like hyper-plane at spatial infinity. Due to
the absence of super-translations [16], [1, 2, 3], the non-Euclidean 3-spaces are orthogonal to
the conserved ADM 4-momentum at spatial infinity [6]: this is a non-inertial rest frame of the
3-universe (see Ref.[17] for the non-inertial and inertial rest-frames in special relativity). There
are asymptotic inertial observers with spatial axes identified by means of the fixed stars of star
catalogues.

As shown explicitly in Ref.[8] the ten quantities *gap(T,0") are 4-scalars of the space-time due to
the use of the 4-scalar radar 4-coordinates. The same happens for all the components of "radar
tensors” (i.e. tensors expressed in radar 4-coordinates): they are 4-scalars of the space-time.

As a consequence, the 3-universe (the isolated system ”gravitational field plus matter”) can be

2 Tt is a volume integral over 3-space of a coordinate-dependent energy density. It is weakly equal to the strong
ADM energy, which is a flux through a 2-surface at spatial infinity.
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described as a decoupled non-covariant non-observable external pseudo-particle carrying a pole-
dipole structure, whose mass and spin are identified by the ADM weak energy and by the ADM
angular momentum. Instead the ADM 3-momentum vanishes due to the rest-frame condition.
The vanishing of the ADM Lorentz boosts eliminate the conjugate internal center of mass of the
3-universe. In absence of matter Christodoulou - Klainermann space-times [19] are compatible
with this description.

In GR the dynamical variable is the 4-metric, which determines the dynamical chrono-
geometrical structure of space-time by means of the line element: it teaches to massless particles
which are the allowed trajectories in each point. In tetrad gravity the 4-metric is decomposed

in terms of cotetrads, gap = El(f) 477(a)(,8) Eg) 3

16 fields Ej(f) (1,0"), is taken as the action for ADM tetrad gravity [2, 3, 6]. This leads to an
interpretation of gravity based on a congruence of time-like observers endowed with ortho-normal
tetrads: in each point of space-time the time-like axis is the unit 4-velocity of the observer, while
the spatial axes are a (gauge) convention for the observer’s gyroscopes.

, and the ADM action, now a functional of the

We get the following parametrization of tetrads, cotetrads and 4-metric (a(q)(7,0") are angles,
P(a) (T o") are boost parameters, Ll )(5) are Lorentz matrices, R(q)p) are rotation matrices,
ea)r(1,07) = > Ruayw) (T, o ))3é(a) (t,0") are cotriads on the 3-space, N(7,0") =
L+n(r,0") and n,) (7' a ) > By (ae)(m,0")) iy (7, 0") are the lapse and shift functions

oA

respectively, 4E 8) and E( ) are tetrads adapted to the 3+1 splitting)
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As shown in Refs.[2, 3, 6] in canonical ADM tetrad gravity there are 16 fields, 16 conjugate
momenta, 14 first-class constraints, generators of Hamiltonian gauge transformations, 14 gauge

3 () are flat indices; the cotetrads ESO are the inverse of the tetrads E(‘i) connected to the world tetrads by
E(Ha) (.T)) = Zf:i(7-7 UT) Eéx) (Z(T7 O'T))~
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variables (the GR inertial effects) and 2+2 physical variables, the tidal effects (the gravitational
waves after linearization). In Ref.[6] a York canonical basis, adapted to ten first-class constraints
(not to the super-Hamiltonian and super-momentum ones, whose solution is unknown), was
identified by means of a Shanmugadhasan canonical transformations : this allows for the first
time to get the explicit identification of the inertial and tidal variables. 1t implements the York
map of Ref.[20] and diagonalizes the York-Lichnerowicz approach [21]. Its final form is

P(a) Q(a) n N(a)
Ty ~ 0 7['(3) =0 | m =0 7, =0

0" 10} Rs
D 7= 223K [ 1,

(a)r>
49rs = _fsgrs = _€¢~)2/3 Z Vm(ei) Vsa(gi)

e2 S5 vaa Ra
M

(2)

In this York canonical basis the inertial effects are described by the arbitrary gauge variables
Qa)s Pla)s L+ 1, Nyqy, 07, 3K, while the tidal effects, i.e. the physical degrees of freedom of the
gravitational field (the two polarizations of gravitational waves (GW) in the linearized theory),
by the two canonical pairs Rg, Iz, a = 1,2. The momenta 7r7(«6) and the 3-volume element
¢ = \/det3g,, have to be found as solutions of the super-momentum 4 and super-Hamiltonian

(i.e. the Lichnerowicz equation) constraints, respectively.

Instead the Dirac observables (DO) (gauge invariant under the Hamiltonian gauge
transformations generated by all the first class constraints; see Ref.[8]) of the gravitational field
are not known: they would be the two pairs of 4-scalar tidal variables in a Shanmugadhasan
canonical basis adapted to all the 14 first class constraints.

The gauge variables a(,), ¢(q) parametrize the extra O(3,1) gauge freedom of the tetrads (the
gauge freedom for each observer to choose three gyroscopes as spatial axes and to choose the
law for their transport along the world-line). In the Schwinger time gauges where one imposes
the gauge fixings ¢ (,)(7,0") = 0, a(4)(7,0") =~ 0 so that the tetrads become adapted to the 3+1
splitting (the time-like tetrad coincides with the unit normal to the 3-space).

The gauge angles #° (i.e. the director cosines of the tangents to the three coordinate lines in
each point of ;) describe the freedom in the choice of the axes for the 3-coordinates ¢ on each

4 The name super-momentum is due to the fact that these three constraints determine three components of the
momenta conjugated to the metric.
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3-space: their fixation implies the determination of the shift gauge variables 7i(,), namely the
appearances of gravito-magnetism in the chosen 3-coordinate system.

Only one momentum is a gauge variable (a reflection of the Lorentz signature): the York time, i.e.
the trace 3K (7,0") of the extrinsic curvature of the non-Euclidean 3-spaces as 3-sub-manifolds of
space-time. This inertial effect (absent in Newtonian gravity with its absolute Euclidean 3-space)
describes the GR remnant of the special-relativistic gauge freedom in clock synchronization [18].
Its fixation determines the lapse function.

In the York canonical basis the Hamilton equations generated by the Dirac Hamiltonian
Hp = Eappy + (constraints) are divided in four groups: A) four contracted Bianchi identities,

namely the evolution equations for qg and 7r§9) (they say that given a solution of the constraints
on a Cauchy surface, it remains a solution also at later times); B) four evolution equation for the
four basic gauge variables §° and 3K these equations determine the lapse and the shift functions
once four gauge fixings for the basic gauge variables are added; C) four evolution equations for
the tidal variables Rz, IIz; D) the Hamilton equations for matter, when present.

Once a gauge is completely fixed, the Hamilton equations become deterministic. Given a
solution of the super-momentum and super-Hamiltonian constraints and the Cauchy data for
the tidal variables on an initial 3-space, one can find a solution of Einstein’s equations in radar
4-coordinates adapted to a time-like observer. To it there is associated a special 3+1 splitting of
space-time with dynamically selected instantaneous 3-spaces in accord with Ref.[5]. Then one
can pass to adapted world 4-coordinates (z# = z#(7,0") =z} + €/{ o) and we can describe the
solution in every 4-coordinate system by means of 4-diffeomorphisms.

In Ref.[7] the coupling of N charged scalar particles plus the electro-magnetic field to ADM
tetrad gravity is studied in this class of asymptotically Minkowskian space-times without super-
translations. To regularize the self-energies both the electric charge and the sign of the energy
of the particles are Grassmann-valued. The introduction of the non-covariant radiation gauge
allows to reformulate the theory in terms of transverse electro-magnetic fields and to extract the
generalization of the Coulomb interaction among the particles in the Riemannian instantaneous
3-spaces of global non-inertial frames.

From the Hamilton equations in the York canonical basis [7], followed by a Hamiltonian
Post-Minkowskian (HPM) linearization (disregarding terms of order O(G?) in the Newton
constant and using an ultra-violet cutoff for matter) with the asymptotic flat Minkowski 4-
metric at spatial infinity as background, it has been possible to develop a theory of GW’s
with asymptotic background propagating in the non-Fuclidean 3-spaces Y, of a family of non-
harmonic 3-orthogonal Schwinger time gauges () (7,0") = 0, @ (T,0") ~ 0, 0 (r,0") ~ 0,
3K(r,0") = F(r,0") parametrized by the numerical values F(7,0") of the York time 3K (7,0")
(the left gauge freedom in the shape of the 3-spaces ¥;) and having the 3-metric in the 3-
spaces diagonal. The lapse and shift functions for these gauges are determined by the Hamilton
equations for §* and 3K, which are elliptic equations depending only on the 3-space differently
from what happens in the harmonic gauges.

2. Relativistic Metrology and Dark Matter

An extremely important (till now unnoticed) point is that the fixation of the gauge freedom of GR
(and of every generally covariant theory of gravity), i.e. the choice of the non-inertial frame and of
the axes for the 4-coordinates in each point, is nothing else than the establishment of conventions
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for relativistic metrology [22] (see also Ref.[5] for theoretical considerations concerning the
nature of space and time), an operation performed from atomic physicists, NASA engineers
and astronomers [23, 24, 25, 26, 27, 28].

The choice of the 4-coordinates is solved at the experimental level inside the Solar system by
the choice of a convention for the description of matter: a) for satellites near the Earth (like
the GPS ones) one uses NASA 4-coordinates compatible with the terrestrial ITFR2003 and
geocentric GCRS TAU2000 frames; b) for planets in the Solar System one uses the barycentric
BCRS-TAU2000 frame. These frames are compatible with ” quasi-inertial frames” in Minkowski
space-time. These are metrological choices like the choice of a certain atomic clock as standard
of time.

In astronomy the positions of stars and galaxies are determined from the data (luminosity, light
spectrum, angles) on the sky as living in a 4-dimensional nearly-Galilei space-time with the
celestial ICRS [23, 26, 27, 28] frame considered as a ”quasi-inertial frame” (all galactic dynamics
is Newtonian gravity), in accord with the standard Friedmann-Robertson-Walker (FRW) ACDM
cosmological model when the constant intrinsic 3-curvature of 3-spaces is zero (as implied by
the CMB data) [29]. To reconcile all the data with this 4-dimensional reconstruction one must
postulate the existence of dark matter and dark energy as the dominant components of the
classical universe after the recombination 3-surface or of modifications of GR like MOND [30]!
Since the celestial reference frame ICRS has diagonal 3-metric, our 3-orthogonal Schwinger time
gauges are a good choice.

The linearized PM Hamilton equations for the particles (whose world-lines z (1) = 2#(7, 1} (1))
identify radar 3-coordinates 7} (7) due to the 3+1 splitting) and for the electro-magnetic field
have been written explicitly in Refs.[7]: among the forces there are both the inertial potentials
and the GW’s. In the third paper of Ref.[7] we disregarded electro-magnetism and we studied in
more detail the HPM equations of motion of the particles. Then we studied the Post-Newtonian
(PN) expansion of these regularized HPM equations of motion for the particles and we found
that the particle 3-coordinates 7} (1 = ct) = 7} (t) (coinciding with the Newtonian coordinates
of the world-lines at this level of approximation) satisfy the equation of motion

%[mz(l—i-l% }6( ) (t 7771(15))) dnglt( )};

mlmj 2
U] : = +0(G7).
Fr 2 )

(3)

where at the lowest order we find the standard Newton gravitational force F;-(Newton) (t) =
G S My 9R0T(0)

mZGa’ﬁ i |7;(£)=7; (2] M
Since we have e*g,, (1 = ct,0") — 1 = 2n(r = ct,0”) + O(G?) = 2% -2 at3’C( (7 =
ct,o") + O(G?), there is a 0.5 PN inertial effect (hidden in the lapse function) not existing in

the Newton theory where the Euclidean 3-space is an absolute notion like the Newtonian time.
It does not depend on the York time 3K (1) but on the non-local York time (A is the Laplacian

associated to the asymptotic Minkowski 4-metric) 3/6(1)(7', o) = (i 3K(1))(T, o"). If we put

3K, (1) = 0, the standard results about binaries are reproduced.
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We see that the term in the non-local York time can be interpreted as the introduction of an
effective (time-, velocity- and position-dependent) inertial mass term for the kinetic energy of

c dt
Newton potential there are the gravitational masses of the particles, equal to the inertial ones in
the 4-dimensional space-time due to the equivalence principle. Therefore the effect is due to a
modification of the effective inertial mass in each non-Euclidean 3-space depending on its shape
as a 3-sub-manifold of space-time: it is the equality of the inertial and gravitational masses of
Newtonian gravity to be violated!

each particle: m; — m; (1 +1d 3]6(1)(75, ﬁl(t))) in each instantaneous 3-space. Instead in the

In the 2-body case we get that for Keplerian circular orbits of radius r the modulus of the relative

G (m+Am(r))

3-velocity can be written in the form with Armn(r) function only of 3K y. Now

the rotation curves of spiral galazies (see Refs.[30, 31, 32]) imply that the relative 3-velocity goes
to constant for large r (instead of vanishing like in Kepler theory). This result can be simulated
by fitting Am(r) (i.e. the non-local York time) to the experimental data: as a consequence
Am(r) is interpreted as a dark matter halo around the galaxy. With our approach this dark
matter would be a relativistic inertial effect consequence of the a non-trivial shape of the non-
Euclidean 3-space as a 3-sub-manifold of space-time. A similar interpretation [7] can be given for
the other two main signatures of the existence of dark matter in the observed masses of galaxies
and clusters of galaxies, namely the virial theorem and weak gravitational lensing. Therefore
there is the possibility of describing part (or maybe all) dark matter as a relativistic inertial
effect. As we have seen the three main experimental signatures of dark matter can be explained
in terms of the non-local York time 3IC(1) (7,&), the inertial gauge variable describing the general
relativistic remnant of the gauge freedom in clock synchronization.

Therefore there is the concrete possibility to explain the rotation curves of galaxies [31, 32, 33]
as a relativistic inertial effect inside Einstein GR (choice of a York time compatible with
observations) without modifications: a) of Newton gravity like in MOND [30]; b) of GR like in
f(R) theories [34, 35]; ¢) of particle physics with the introduction of WIMPS [36].

Therefore one can propose to define a Post-Minkowskian ICRS with non-Fuclidean 3-spaces,
whose intrinsic 3-curvature (due essentially to gravitational waves) is small, in such a way that
the York time be (at least partially) fitted to the observational data implying the presence of
dark matter. Then automatically BCRS would be its quasi-Minkowskian approximation for
the Solar System. Let us remark that the 3-spaces can be quasi-Euclidean (i.e. with a small
3-curvature tensor), as required by CMB data in the astrophysical context, even when their
shape as 3-sub-manifolds of space-time is not trivial and is described by a not-small York time.
This would be the way out from the gauge problem in general relativity: the observational
conventions for matter would select a reference system of 4-coordinates for PM space-times in
the associated 3-orthogonal gauge. A Post-Minkowskian definition of ICRS will be also useful
for the ESA-GATIA mission [37] (cartography of the Milky Way) and for the possible anomalies
(different from the already explained Pioneer one) inside the Solar System [38].

The open problem is the determination of the non-local York time from the data. From what
is known from the Solar System and from inside the Milky Way near the galactic plane, it
seems that it is negligible near the stars inside a galaxy. On the other hand, it is non zero near
galaxies and clusters of galaxies of big mass. However only a mean value in time of time- and
space-derivatives of the non-local York time can be extracted from the data. At this stage it
seems that the non-local York time is relevant around the galaxies and the clusters of galaxies
where there are big concentrations of mass and the dark matter haloes and that it becomes
negligible inside the galaxies where there is a lower concentration of mass. Instead there is no
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indication on its value in the voids existing among the clusters of galaxies. However if we do not
know the non-local York time on all the 3-universe at a given T we cannot get an experimental
determination of the York time *K1)(7,d) = A®K)(7,7). Therefore some phenomenological

parametrizations of 3/6(1)(7', &) will have to be devised to see the implications for *K (7, 7).

3. Conclusion

In Ref.[39] there is a first attempt to fit some data of dark matter by using a Yukawa-like ansatz
on York time suggested by the f(R) theories [40]: in this way the good fits of the rotation curves
of galaxies obtainable with f(R) theories can be reproduced inside Einstein’s GR as an inertial
gauge effect. Therefore no conclusion can yet be reached about this proposal for explaining dark
matter as a relativistic inertial effect.

The next big challenge after dark matter is dark energy in cosmology [41, 42]. Let me remark
that in the FRW cosmological solution the Killing symmetries connected with homogeneity and
isotropy imply (7 is the cosmic time, a(7) the scale factor) 3K (1) = —% = —H, namely the
York time is no more a gauge variable but coincides with the Hubble constant. However at the
first order in cosmological perturbations we have 3K = —H + 3K, (1) with 3K (1) being again an
inertial gauge variable. Instead in inhomogeneous space-times without Killing symmetries like
the Szekeres ones [43, 44, 45] the York time remains an inertial gauge variable.

Therefore the York time has a central position also in the main quantities on which relies the
interpretation of dark energy in the standard ACDM cosmological model (Hubble constant, the
old Hubble redshift-distance relation replaced in FRW cosmology with the velocity distance
relation or Hubble law). As a consequence it looks reasonable to investigate on a possible gauge
origin also of dark energy by studying the dependence on the York time of quantities like redshift,
luminosity distance, gravitational lensing.
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