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Abstract. We develop a new 3D-model to evaluate the light characteristics and the thermal 

features of a cesium-vapor laser end-pumped by a laser diode. The theoretical model is based 

on the principles of both heat transfer and laser kinetics. The 3-dimensional population density 

distribution and temperature distribution are both systematically obtained and analyzed. The 

methodology is thought to be useful for realization of a high-powered diode-pumped alkali 

laser (DPAL) in the future. 

1.  Introduction 

With narrow linewidth, high Stokes-efficiency, compact size, good thermal performance, non-toxic 

system, etc., a diode-pumped alkali laser (DPAL) becomes one of the most hopeful high-powered 

laser sources of the next generation and has been rapidly developed since the beginning of the 21th 

century [1-5]. However, the thermal effects will bring about some serious problems in nonuniformity 

of the temperature distribution for a high-powered DPAL system because the thermal conductivity of a 

gas-state medium is so small that the generated heat cannot be transferred outside efficiently [6-9]. 

Unlike a conventional electrically-excited gas-state laser, the number densities of alkali vapors (gain 

gas) and buffer gases (generally being helium and small hydrocarbons such as methane and ethane) in 

a DPAL often exhibit inhomogeneous distributions resulting from the temperature gradient inside a 

vapor cell [10, 11]. Actually, the inhomogeneous of the alkali vapor directly influences the output 

performances of a DPAL. Furthermore, the nonuniformity of buffer gases affects the line-center 

collisionally broadened cross sections of both the D1 line (n2P1/2 → n2S1/2) and the D2 line (n2S1/2 → 

n2P3/2) of an alkali atom as well as the finestructure mixing rate (n2P3/2 → n2P1/2) [12-15].  

2.  Experimental Setup 
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Figure 1. Schematic illustration for segmentation of a gain media cell. 
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For an end-pumped DPAL configuration, the optical axis of a pump laser diode coincides with that of 

the output laser. As shown in Figure 1, we divide the cylindrical gas vapor cell into many cylindrical 

annuli along the optical axis direction with i = 1, 2, 3…M and the transversal surface direction with j = 

1, 2, 3 …N. Every small cylindrical annulus is thought as a heat source and a gain source. Both the 

gain and the heat generated in the cylindrical annulus are different with each other. 

 1P TP , j
 1P TP M , j 

 1P FP M , j 

 1L FP M , j 

 1L TP M , j 

 1P FP , j

 1L FP , j

 1L TP , j

Vapor  Cell
End-window End-window

3 2 1i M i i i    ， ， ，

PBSHR

PP

LP

OC



 

Figure 2. Schematic illustration showing pump and laser propagation directions at various 

points as the pump and laser fluence traverses the gain media in a double-pass 

geometry. 

The pump and laser energies at the outside surface of the end-windows as the pump and laser 

fluence goes through the gain medium in double-pass geometry can be expressed by 
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Figure 3. Diagram describing the power changes when the pump and laser fluence 

traverses the (i, j) cylindrical annulus. 

As shown in Figure 3, we select an arbitrarily cylindrical annulus (i, j) among the segments to 

analyze the laser and heat features. PP-T (i, j) and PP-F (i, j) are the pump power corresponding to the (i, 

j) cylindrical annulus transferred towards the left and right (reflected back from the high reflector), 
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respectively. PL-F (i, j) and PL-T (i, j) are the laser power corresponding to the (i, j) cylindrical annulus 

transferring towards the left (reflected back from the output coupler), respectively. 

The relationships between PP-T (i, j) and PP-T (i+1, j), PP-F (i, j) and PP-F (i+1, j), PL-T (i, j) and PL-T 

(i+1, j), PL-F (i, j) and PL-F (i+1, j), can be respectively given by 
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The equated power of the pump and the laser power can be simply expressed by 
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Figure 4. Drawing of illustrating heat generated and transferred for the (i, j) 

cylindrical annulus of a vapor cell. 

Next, the heat characteristics can be shown as Figure 4. The relationship between the input heat and 

the output heat as well as the generated heat the can be described as 
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Then, we calculate the population distribution in a three energy-level system of the (i, j) cylindrical 

annulus (see Figure 3) by using the well-known rate equations as follows [5, 11, 12]: 
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We calculate the volume density of generated heat of the (i, j) cylindrical annulus by using the 

following formula: 
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By utilizing the theoretical model, the thermal features and the physical characteristics of a DPAL 

can be obtained. 

3.  Results and Discussions 

By using the theoretical model introduced in Section 2, we calculate the physical characteristics of a 

DPAL and the thermal features of a cesium cell. The relevant parameters are listed in Table 1. 

 

Table 1. Parameters for evaluating temperature distribution of a Cs vapor cell 

Parameter Description Values 

Partial pressure of He 500 Torr 

Partial pressure of C2H6 100 Torr 

del
 

90% 

L 25 mm 

R 5 mm 

TW 100 ℃ 

Pump power 100 W 

End-windows thickness 1 mm 

ROC 30% 

Room temperature 20 ℃ 

Pump FWHM 30 GHz 

Center wavelength of the pump 852.3 nm 

D1 transition wavelength 894.6 nm 

Laser beam waists 0.5 mm 

Pump beam waists 1.1 mm 
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Figure 5. 3-D distribution of absorbed pump density inside a cesium cell. 
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We first analyze the distribution of absorbed pump density inside a vapor cell. As shown in Figure 

5, the absorption of gas medium nearby the two end-windows is much stronger than those around the 

central area. The reason is that the pump power is high enough to make the gas medium around the 

central core be absorbed adequately, and the gas medium density nearby the end-windows is higher 

than that around the central core since the temperatures nearby the end-windows are lower than those 

in the other places. The laser density of the pump input side is higher than another side (see Figure 6) 

as the gain of the input side is higher than another one.  
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Figure 6. 3-D density distribution of laser intensity inside a cesium cell. 

 

As shown in Figure 7, the temperature distribution exhibits a distinct gradient and achieves the 

maximum values at the central axis of the cell. Such tendencies can be explained by a fact that the 

thermal conductivity of a gas-state medium is so small that the generated heat cannot be transferred 

outside efficiently. It can be found that the absorbed pump power leads to a more obvious temperature 

rise for a static medium. The maximum temperature rise even reaches about 550 K at the cell axis. 

However, such a temperature gradient can be effectively decreased with a flowing approach. The 

published literatures have proven that the flowing-gas procedure is essential and effective to construct 

an even-higher DPAL system. 
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Figure 7. 3-D temperature distribution of a cesium cell. 
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4.  Conclusions 

In this report, we present the results of theoretical studies on the thermal features of a cesium vapor 

cell pumped by a laser diode. A theoretical model is developed by combining the procedures of laser 

kinetics and heat transfer together. 

The temperature around the cell axis is somewhat higher than the other positions inside the cell. 

The highest temperature is located at the central optical axis near the pump input side. The absorption 

efficiency, gain intensity and generated thermal power near the pump input side are much stronger 

than those near the opposite side.  
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