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Abstract. 100Cr6 steel (AISI 52100) is one of the most used steel grades in the manufacturing 

of through hardening bearings mainly due to its properties: controlled impurities during steel 

making process, high hardenability and well known mechanical properties such as wear and 

fatigue resistance on clean environments. These characteristics play an important role on the 

performance of a bearing together with the bearing design, loads and environment. However, 

there is an increasing set of demanding applications where the above mentioned steel does not 

fulfil the required needs and thus, bearing manufacturers continuously work on the 

development of technologies to improve the bearing performance. 

Nowadays thermochemical treatments (TCT), such as carbonitriding are being applied to this 

steel in order to enhance the performance of such pieces in contaminated environment, where 

particles can produce defects on the raceway, increasing the onset of defects that eventually 

lead to premature fail. These treatments induce the formation of carbides and nitrides which are 

directly related to the enhancement of the wear resistance and also to increasing the amount of 

Retained Austenite (RA) in the surface which may have a beneficial effect as it delays the 

crack propagation on subsurface regions, then increasing bearing fatigue life.  

In this work, different TCTs have been applied to 100Cr6 steel flat samples. Using a tribometer 

(ball-on-disc configuration) and a grinding machine, surface and in-depth wear resistance 

measurements have been carried out, obtaining wear resistance profiles that have been 

correlated with the microstructure, microhardness profiles and RA content. 

The most promising TCT has been combined either with Laser Shock Peening (LSP) 

treatments or carbonaceous Physical Vapour Deposition (PVD) coatings with the aim of 

improving not only the wear resistance but also the CoF of the duplex treated sample. 

The results obtained on flat samples are promising; the combination of treatments produces 

long-lasting low CoF and a reduction of 60% in the wear rate. However, the treatments should 

be applied on real pieces and tested in a test bench in order to obtain more appropriate data 

about the lifespan of duplex treated bearings. 
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1.  Introduction 

Rolling bearings are one of the most critical components in any mechanical system, especially in 

automotive and industrial applications where they usually work under high cyclic loads and high 

speeds requirements, not only in clean but also in contaminated environments where metallic particles 

are present [1]. 

Nowadays load bearing capacity requirements for bearings are becoming more demanding, as well 

as longer service life and higher reliability [2,3]. These requirements are aimed to develop new high-

end applications and to reduce maintenance costs. 

To meet these demands, tribologists and material experts are exploring new approaches in order to 

enhance existing materials, such as SAE 52100 steel for bearings, studied in this work [3,4]. 

Failures in bodies working under rolling or sliding contact, such as bearings, are normally due to 

Rolling Contact Fatigue (RCF). Cyclic loads lead to crack generation and propagation, what ends in 

material removal through pitting/delamination of the near-surface area [4,5]. Is therefore clear that 

surface characteristics have a great influence in RCF resistance [6]. 

Different material and surface modifications have been analyzed to enhance life performance and 

wear resistance, as well as friction reduction, by preventing the appearance of RCF.  

One of the modifications analyzed are thermochemical treatments, specifically Carbonitriding [7]. 

It involves the diffusion of C and N into the steel substrate, producing fine carbides and nitrides, 

compressive surface stress and a higher concentration of Retained Austenite than through hardening 

treatment. The result is higher hardness and enhanced fatigue life up to 10-15 times longer due to 

crack propagation reduction [4]. 

Other modifications include surface treatments such as Laser Peening. It is an industrial surface 

treatment featuring the formation of shock waves on the surface through laser pulses that produce 

compressive stress on it [8,9]. For that reason mechanical properties of the material are improved, 

namely higher hardness, wear and friction reduction under certain conditions, and improved fatigue 

strength by delaying crack propagation [8,10]. Besides one of the advantages of this technique is that 

compressive stress from Laser Peening process penetrate deeper than those from Shot Peening [10]. 

The other surface treatments tested are Diamond-Like Carbon (DLC) coatings. DLC are 

amorphous materials with different %C (variants: a-C:C) containing significant fractions of sp3 bonds. 

It is deposited through Physical Vapour Deposition or Plasma Assisted Chemical Vapour Deposition 

techniques in the form of a sputtered film composed of several layers, and improves coefficient of 

friction and wear rate by generating compressive stress and high microhardness [11,12]. DLC 

thickness, which is in the range of 0.75 – 1μm, is a critical factor because is directly related to internal 

residual stress within the coating. Thick DLC layers are associated to high failure rates in the first 

steps of RCF [5]. 

2.  Experimental 

2.1.  Materials 

A 100Cr6 steel bar of 50 mm in diameter was cut into slices of 5 mm each. The bar had been 

previously annealed following this process: 815ºC for 3 hours, 735ºC for 4 hours, 675ºC for 3 hours, 

slow cool down to 540ºC and finally air cooling down to room temperature. 

2.2.   Thermochemical treatments (TCT) 

The samples were thermally/thermo-chemically treated in an Eros T4 with 2 chambers transfer oven. 

The reference samples were heated at 830 ºC in a controlled atmosphere during 1 h and then were 

oil quenched.  

For the TCT, four different temperatures between 800 and 925 ºC were used: T1, T2, T3 and T4. 

Other parameters set in the TCT were: C potential, NH3 intake and treatment time (see Table I). The 

samples were oil quenched and split in two groups. The first group was kept in that state and the 
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second group was subjected to sub-zero (SZ) treatment, performed with the aim of optimizing the 

retained austenite. 

After the different thermal/thermochemical treatments, all the samples were tempered at 180 ºC 

during 2 h. 

 

Table I: thermal/thermochemical treatment conditions 

Sample Temperature (ºC) Time (h) Atmosphere Sub-zero 

Ref 830 1 1% C No 

T1 T1 4 1,1 %C + NH3 No 

T1SZ T1 4 1,1 %C + NH3 -45 ºC 

T2 T2 4 1,1 %C + NH3 No 

T2SZ T2 4 1,1 %C + NH3 -45 ºC 

T3 T3 4 1,1 %C + NH3 No 

T3SZ T3 4 1,1 %C + NH3 -45 ºC 

T4 T4 4 1,1 %C + NH3 No 

2.3.  Grinding process 

A Chevalier CNC flat grinding machine was used for removing the material for the in-depth wear 

tests. Borazon extra-fine grinding wheels and low feed rate were used with the aim of minimizing the 

distortion and phase transformation during this process. 

Different thicknesses of material were removed from the samples: 100, 150, 200 and 250 µm. 

These depths were chosen taking into account the manufacturing process of the bearings and to study 

wear resistance behaviour of the structure in each layer. 

The surface of the samples was polished using cloths and polycrystalline diamond suspension of 9, 

3 and 1 µm for the final polishing stage. 

2.4.  Laser Shock Peening (LSP) 

LSP treatments were carried out using a Thales Gaia HP Laser. The configuration used in this work 

produces pulses of 10 ns and 14 J, with a wavelength of 532 nm, and they are able to produce plastic 

deformation in the material and induce a compressive layer in the first mm of the surface. Three 

different configurations were used: LC1, LC2 and LC3. 

2.5.  Physical Vapour Deposition (PVD) 

PVD coatings were deposited using a Metaplas Ionon MZR 323. The equipment has three magnetron 

sputtering sources, being two of them balanced and one unbalanced. 

WC:C coatings of about 1 µm were deposited on the samples. 

2.6.  Metallography 

The treated samples were cut using a Buehler Isomet 4000 precision saw and then hot-mounted in 

phenolic resin using a Buehler Simplimet 1000 mounting press. The cross sections were first polished 

using SiC polishing papers (P320, P600, P1200) and then using diamond suspensions of 9, 3 and 1 µm 

for a final mirror polish. In order to reveal the microstructure of the material and the effect of the TCT, 

the samples were chemically etched with nital 3 % and Picral. 

The optical inspection was carried out using a Leica DMI 5000M metallography microscope. The 

microstructure, the in-surface depth of the TCT’s and the grain size, following the ASTM E112, in the 

area affected by the TCT were analysed. 

2.7.  Microhardness 

A micrometer Buehler Micromet 2103 was used for determining the hardness profiles of the material. 

Polished cross sections were tested using a Knoop indenter and a load of 50 gf. Five indents were 

performed on each studied depth. 
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2.8.  X-Ray Diffraction 

Quantitative XRD analysis was used to determine the fraction of retained austenite. For these 

experiments, samples were polished up to Ra = 10 nm. X-ray diffraction measurements were 

performed with a Bruker D8 Discover diffractometer equipped with a Co X-ray tube, a Lynx-eye 

position sensitive detector and Goebel mirror optics to obtain a parallel and monochromatic X-ray 

beam. A current of 30 mA and a voltage of 40 keV were used. Operational conditions were selected to 

obtain X-ray diffraction data of sufficiently high quality, e.g., sufficient counting statistics and narrow 

peak widths. XRD data were collected over a 2θ range of 35 -116º in steps of 0.01º and 0.3 s/step. To 

minimize the effect of texture, the volume fraction of retained austenite was calculated from the 

integrated intensities of (111), (200), (220), and (311) austenite peaks and the ferrite (110), (002), 

(112) planes. For this goal, a calibration curve plotted from the data of three standard reference 

materials certified by the National Bureau Standards with specific amounts of austenite (5, 15 and 

30%) was used. 

In-depth residual stress profiles were obtained using the same equipment. The surfaces were 

measured at different angles and the position of the diffraction peeks was studied, obtaining the 

surface stress. The measurements were repeated several times after removing layers of material by 

electropolishing. The results allowed the obtention of the stress profiles. 

2.9.  Wear tests 

The wear tests were performed on a ball-on-disc CSM HT Tribometer with a WC 6 mm in diameter 

ball as a counterbody, 10 N of normal load and duration of 50.000-100.000 cycles at 10cm/s and track 

radius from 4 to 8 mm. 

The obtained wear tracks were measured by means of an interferometric profilometer Wyko RST 

500 TM using the Vertical Scanning Interferometry (VSI) mode. The loss volume was used to 

determine the wear coefficient of each sample. 

3.  Results & discussion 

3.1.  Thermochemical treatments 

In the first part of the study, flat samples were treated with the aim of studying the effects of the TCT 

on the material and discard the treatments that are not suitable to be scaled up to real parts. 

3.1.1.  Microstructure. Optical microscopy was used to determine the penetration of the TCT. There 

are two factors affecting the measurement. Firstly, the diffusion of nitrogen and carbon into the 

material and secondly, the effect of sub-zero quench that changes the susceptibility of the material to 

be chemically etched, so the thickness of the carbonitrided layer is not clear (See figure 1). Besides, 

sub-zero treatment transform part of the retained austenite, white and clearly visible in the optical 

analysis, into martensite, that is similar to the rest of the bulk material. Due to this, the determination 

of the treated layer by optical methods was not accurate. Results are collected in table II. 

3.1.2.  Grain size. The optical analysis of the samples allowed the determination of the grain size in 

the carbonitrided surface. The temperature and time of the TCT are higher than in the conventional 

quenching process, so the grain size is expected to be bigger (figure 2). 

As it can be seen in Table II there are big differences in the depth observed by optical microscopy 

due to the effect of sub-zero treatment. 

The grain size of the material in the area close to the surface has been increased due to the 

thermochemical treatment (see figure 2). TCT performed at T3 and T4 were dismissed due to the 

excessive growth of the grain size. It must be considered that the study is focused on the development 

of treatments intended for bearings, where ASTM grain size number under 9 is not allowed. 
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Figure 1: Optical micrographs (100X) of samples T4 (a) and T3SZ (b) after nital etching and 

estimated treatment depth. 

 

Figure 2: Optical micrographs (200 X) of samples T2 (a) and T3 (b) after Picral etching 

Table II: treatment depth, grain size and retained austenite surface content of the different 

treatments 

Sample Treatment depth (µm) Surface grain size ASTM  RA content (%) 

Ref --- 9-10 7.5 

T4 380-450 7 32.6 

T3SZ 200-220 7 26.5 

T3 300-400 8 29.6 

T2SZ 200-220 9 29.7 

T2 260-290 9 42.8 

T1SZ 180-210 9 22.5 

T1 200-220 9 37.0 

 

3.1.3.  XRD surface measurements. Surface XRD measurements showed an important increase in the 

RA content on the surfaces of the treated samples (table II). The RA content of the quenched sample is 

7.5 %, but the carbonitriding process increases this amount due to the stabilization effect that nitrogen 

& carbon induces on austenite. 

A drop in the RA due to sub-zero treatment can be observed in all samples. The RA content of 

sample T3 is lower than expected, which can be ascribed to problems during surface preparation of the 

sample. Due to this, the difference between the samples T3 and T3SZ is less than 3 %. 

(a) (b) 

(a) (b) 
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Surface RA content higher than 30% is not allowed due to potential distortions during operation in 

real pieces, so subzero treatments were preferred versus non subzero treatments. 

3.2.  In-depth measurements 

After the first analysis, the number of suitable treatments was reduced to two: T1SZ and T2SZ.  

After this first stage of the study, two sets of samples of each treatment were prepared, then grinded at 

different depths and polished with the aim of evaluating the in-depth properties of the treatments and 

obtain the information needed for scaling-up the process to be applied on real bearings. 

Different characterization analyses were performed on the samples: optical microscopy, RA 

measurement by XRD and wear resistance measurements by means of Pin-on-disc tribology analysis. 

The results are gathered on table III. 

The microstructure study (figure 3) shows that, at T1, the cementite content of the surface is 

increased, producing carbide networks. These networks could represent a problem in the 

manufacturing process of real parts, so must be taken into account. 

In addition to this, microhardness profiles were measured in cross sections of samples T1SZ and 

T2SZ as it can be seen in figure 4. 

The analysis of the curves in figure 4 allows determining the depth at which the wear is minimum 

in light of the tribology results, which is a goal in this study. This point is 200 µm for T1SZ and 150 

µm for T2SZ and the obtained value can be considered similar to the wear rate of the quenched (Ref) 

sample. These points correspond with RA contents of 8.8 % in the treatment at T1 and 22.4 % in the 

one at T2. This difference could be explained for the different content in nitrides, carbides and 

carbonitrides, which was not analysed. 

Regarding the microhardness, figures 4 and 5 show how a high RA content affects strongly the 

surface hardness of sample T2SZ, lowering it, especially in the first 100 µm. The lower content of RA 

observed in sample T1SZ, combined with the presence of cementite, allow the increase of the hardness 

with respect to the Ref sample. The hardness has been increased in the first 400-500 µm of the 

material, to decrease later to bulk values. 

 

 

Figure 3: Optical micrographs (200 X) of samples T1SZ (a) and T2SZ (b) after nital etching. 

Cementite segregates in grain boundary in the first 100 µm of the samples T1SZ 

 

After this stage, T1SZ was selected to be combined with LSP and PVD treatments. Is expected that 

treatment T1SZ will be able to improve the fatigue resistance of the material without losing surface 

hardness and wear resistance. 

 

Table III: samples obtained after grinding process and measured properties 

Sample Removed RA (%) K wear * E16 

(a) (b) 
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material (µm) (m3/Nm) 

Ref 0 7.5 5.2 ± 3.0 

T1SZ 0 22.5 23.2 ± 4.6 

T1SZ100 100 15.2 19.9 ± 4.4 

T1SZ150 150 13.6 17.4 ± 5.5 

T1SZ200 200 8.8 10.1 ± 5.1 

T1SZ250 250 8.2 12.8 ± 5.9 

T2SZ 0 29.7 26.1 ± 6.9 

T2SZ100 100 27.4 17.4 ± 5.0 

T2SZ150 150 22.4 9.8 ± 5.6 

T2SZ200 200 20.3 13.7 ± 8.8 

T2SZ250 250 19.3 18.0 ± 9.6 

 

  

Figure 4: Graphs of RA content and Kwear profiles of Ref, T1SZ and T2SZ 

 

Figure 5: Microhardness profiles of samples Ref, T1SZ and T2SZ 

3.3.  Laser Shock Peening (LSP) 
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Stress profiles were studied with the aim of determining the effect of LSP on the 100Cr6 treated 

samples. Figure 6 shows the profiles obtained after the application of 3 different LSP treatments. All 

of them induce a compressive layer of about 400 MPa at 50 µm that decreases to 200 MPa at 600 µm 

of depth. 

LSP1 was the best of the treatments taking into account the profile produced and the time 

consumption. 

 

 

Figure 6: Stress profiles produced by LSP treatments 

3.4.  Duplex treatments 

With the aim of characterizing the duplex treatments, samples with T1SZ treatment were grinded, 200 

µm of material were then removed, and finally the samples were treated either by LSP (Treatment 

LSP1) or by PVD (WC:C coating). 

Wear resistance of the duplex treated samples were tested and the results compared with the 

reference and the single treated sample. 

As can be seen in figure 7, PVD coating improves the wear resistance of the sample with respect to 

the reference, so it is a suitable treatment for the required application. The improvement on the wear 

resistance of 100Cr6 provided by LSP treatment is not clear and the obtained measured wear rate is 

higher than the reference one. 

 

 

Figure 7: Kwear of the different duplex treatments 
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Table IV: Kwear of the duplex treated samples 

Sample 
Removed 

material (µm) 
K wear * E16 

(m
3
/Nm) 

Ref 0 5.2 ± 3.0 
T1SZ200 0 10.1 ± 5.1 

T1SZ200+LSP 200 7,1 ± 2.1 
T1SZ200+PVD 200 2.0 ± 0.2 

4.  Conclusions 

The application of TCT on 100Cr6 intended for improving the performance of bearings must be 

controlled due to several characteristics of the treatment. 

The grain size of the material grows in contrast to the quenched samples due to the temperature of 

the process, and the longest times at these temperatures (4 h Vs. 1h). Samples treated at temperatures 

over T2 have suffered an unacceptable growth of its grain size, from 9-10 to 7-8 in ASTM Grain 

Number. 

The diffusion of C and N in the material is hardly observable by optical microscopy due to changes 

in the chemical etching susceptibility of the material. 

The diffusion on N into the steel matrix stabilizes the austenite, increasing the RA content from 7.5 

%, present in the quenched sample, to a maximum of 42.8 %, measured in the surface of the sample 

T2. 

At T1 the low diffusion of the C produces enrichment in the cementite content of the surface, 

generating harmful carbides networks which can affect the machinability of the material. The depth of 

the affected layer is less than 100 µm. 

The in-depth wear resistance of the material is affected by the RA content and the presence of 

particles of carbonitrides, nitrides and carbides, producing profiles that present a minimum in the wear 

rate curve. In the studied treatments this minimum was found at 200 µm in the sample T1SZ and at 

150 µm in the case of sample T2Z. In both cases this parameter is slightly higher than the one of the 

quenched sample. 

Hardness profiles show that the treatment can produce an increase in the hardness of the first 300-

400 µm for the sample T1SZ. The low RA content of this treatment and the presence of cementite in 

the surface are responsible of this result. 

However, the sample T2SZ is affected by the high RA content, so the hardness is lower than the 

reference in the first 200 µm and slightly higher between 200 and 400 µm. 

The combination of TCT and LSP does not produce a clear improvement in the wear resistance of 

the material. On the contrary, TCT + PVD coating enhance the properties of the surface, reducing up 

to 60 % the wear rate. 
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