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Abstract. For most engineering alloys, the long fatigue crack growth under a certain stress level 

can be described by the Paris law. The law provides a correlation between the fatigue crack 

growth rate (FCGR or da/dN), the range of stress intensity factor (ΔK), and the material constants 

C and m. A well-established test procedure is typically used to determine the Paris law constants 

C and m, considering standard specimens, notched and pre-cracked. Definition of all the details 

necessary to obtain feasible and comparable Paris law constants are covered by standards. 

However, these cost-expensive tests can be replaced by appropriate numerical calculations. In 

this respect, this paper deals with the numerical determination of Paris law constants for carbon 

steel using a two-scale model. A micro-model containing the microstructure of a material is 

generated using the Finite Element Method (FEM) to calculate the fatigue crack growth rate at 

a crack tip. The model is based on the Tanaka-Mura equation. On the other side, a macro-model 

serves for the calculation of the stress intensity factor. The analysis yields a relationship between 

the crack growth rates and the stress intensity factors for defined crack lengths which is then 

used to determine the Paris law constants. 

1.  Introduction 

Structural health monitoring and detection of failures are highly important for fitness and service 

assessment of structures. Failure of structures under fatigue loading can occur at load levels below the 

yield stress of the used material. Therefore, it is of special importance to be able to make predictions of 

life cycles until catastrophic fracture occurs. A well-known example of such catastrophic failure is the 

huge train accident in Eschede where one wheel of the train broke due to cyclic loading (figure 1) that 

has not been considered during construction [1]. On the other hand not every single crack has to be 

critical immediately. Often structures can withstand cracks up to a certain crack length until unstable 

fracture occurs. In order to determine the point where crack growth becomes unstable, it is necessary to 

develop methods to describe crack growth mathematically.  
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Figure 1. Fracture surface of the broken train wheel [1]. 

 

A very common and often used method for the characterization of the long crack growth is the Paris 

law which gives a relationship between the fatigue crack growth rate (FCGR or da/dN) and the stress 

intensity factor (ΔK) at the crack tip during the stable crack growth [2], equation (1). A typical fatigue 

growth rate curve – also known as da/dN versus ΔK curve – is shown in figure 2. The curve is defined 

by regions I, II and III. The Paris law relationship can be visualized as a straight line for the region of 

stable crack growth – region II [3]. The accompanying mathematical equation contains two material 

parameters C and m, where m represents the slope of the line in figure 2 and C the y-axis-intercept [4]:  

 
d𝑎

d𝑁
= 𝐶(∆𝐾)𝑚 (1)  

 

The crack growth rates in the region II are typically in the order of 10-9 to 10-6 m/cycle and correspond 

to stable crack growth. The constants C and m are usually determined in experiments [5-9] and depend 

on the material and various influencing factors such as temperature, environmental medium and loading 

ratio [5, 10]. The last is probably the most significant and usually results in closely spaced lines parallel 

to each other. For metals the exponent is typically of the order m = 2…4 [10]. 

 

 

Figure 2. Geometry of the used specimen with a central crack [3]. 

 

Since the experimental determination of the Paris law constants is typically tedious and time 

consuming, the objective of this paper is to determine them numerically considering the influence of 

microstructure on the crack growth rate.  
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2.  Modelling approach and details 

The simulations for determination of the Paris law constants are done with the Finite Element (FE) 

software ABAQUS and by applying a two-scale model. The model contains the microstructural 

submodel of a material that is used to calculate the fatigue crack growth rate da/dN at a crack tip and 

the macro-model that serves for the calculation of the stress intensity factor ΔK. In order to get the 

typical da/dN versus ΔK curve, the crack growth rate and stress intensity factors for six different crack 

lengths are determined. The constants are then determined from the interpolated straight line, 

representing region II in figure 2, as the slope m and the y-axis-intercept C.  

 

 

Figure 3. Schematic illustration of the two different approaches. 

 

The input data for the common diagram is calculated using the two aforementioned approaches, as 

shown in figure 3. On the one hand the stress intensity factor is determined using the full-scale macro-

model with a center crack and on the basis of Linear Elastic Facture Mechanics (LEFM). The crack 

growth rate on the other hand is determined using the submodel based on the Tanaka-Mura equation 

[11, 12]; the submodel is placed in the area behind the crack tip. The grain structure is assigned to the 

submodel to consider micro-crack initiation processes in the vicinity of the crack tip. 

The Tanaka-Mura equation is typically used to estimate the number of cycles that are attributed to 

the crack nucleation in a single grain [11, 12]. Jezernik et al. [13, 14] introduced a modification of the 

original equation in the sense that the crack does not form instantaneously through the whole grain but 

it forms in segmental manner: 

 

𝑁𝑠 =
8𝐺𝑊𝑐

𝜋(1 − 𝜈)𝑑𝑠(∆𝜏̅ − 2𝐶𝑅𝑆𝑆)2
 (2)  

 

where 𝑁𝑠 is the number of cycles required to form a crack segment in a single grain, i.e. crystal. 

Furthermore, equation (2) contains two microstructure-related parameters, namely the length of slip line 

segment 𝑑𝑠 and the average shear stress range ∆𝜏̅ on it. Other material constants (such as shear modulus 

𝐺, crack initiation energy 𝑊𝑐 and Poisson’s ratio 𝜈) can be either found in literature for most materials 

or can alternatively be obtained experimentally. The critical resolved shear stress (CRSS) is particularly 

interesting since it can be obtained by means of Molecular Dynamics (MD) simulations [15]. The CRSS 

represents a critical value of the shear stress along the slip direction that must be overcome for the 

dislocation to move, i.e. if the magnitude of the resolved shear stress is below the value of the CRSS, no 

dislocation movement is allowed and consequently no pile up at the grain boundary takes place [16]. 
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2.1.  Geometry of the macro-models 

In order to accomplish the goal of the present paper it was necessary to create two slightly different 

full-scale macro-models. Both models represent the same geometry, however, the ways of modelling 

the crack for determination of stress intensity factor ΔK on the one side and fatigue crack growth rate 

da/dN on the other require certain adjustments at the regions of interest, i.e. on the crack-affected path. 

More specifically, the macro-model for the calculation of ΔK requires the usage of some special 

ABAQUS techniques to represent the crack – in this case the seam crack is used – while the macro-

model (further: global model) for determination of da/dN needs to be geometrically adjusted to the 

submodel that is placed at the tip of the structural crack. A seam defines an edge or a face in a model 

that is originally closed but can open as a crack during an analysis [17].  

The models were built on the basis of a specimen with central pre-crack prepared for fatigue testing, 

shown in figure 4, considered in the paper of Božić et al. [3]. At the initial state the specimen has a notch 

and a pre-crack of 2a = 8 mm (figure 4, A – Crack detail). Only half of the specimen has to be modeled 

due to symmetry with respect to the vertical y-axis. The symmetry with respect to the x-axis is aligned 

with the crack and, therefore, cannot be used in either case; for ΔK determination the applied seam 

cannot extend along the boundaries of a part and must be embedded within a face of a two-dimensional 

(2D) part or within a cell of a solid part [17]. In the other case, the used submodel (microstructural 

model) at the crack tip area requires the transfer of boundary conditions – in this case displacements – 

from both parts of the global model, the upper and the lower one.  

 

 

Figure 4. Geometry of the used specimen with a central pre-crack [3]. 

 

The structural crack lengths which were used for this study were taken from [3], where ΔK values 

were determined using the FE software ANSYS. Nevertheless, ΔK values were calculated again – this 

time with ABAQUS – first to compare the results with previous simulations and second to ensure that 

the models are built properly. The considered crack lengths for the simulations are listed in table 1. 
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Table 1. Considered structural crack lengths. 
  

Crack 

designation 

Crack 

length 

(mm) 

a1 9.9 

a2 20.1 

a3 29.9 

a4 39.1 

a5 49.3 

a6 59.3 

 

All models which are used here are built as 2D, in accordance to the geometry of the specimen and 

the fact that the main central part has a thickness of just 4 mm along the z-direction. The areas in the 

upper and lower part of the models with relatively higher thickness (54 mm) were also modelled as 2D. 

Those two parts are used to apply loading conditions and movement constraints, respectively, as shown 

in figure 5. The stress state in the middle part of the cracked plate is assumed to be plane stress. The 

thicknesses of the specimen in both regions, the central and outer, were considered by assigning plane 

stress thickness to their belonging sections.  

As already mentioned only one half of the specimen has to be modelled. The symmetry is realized 

by using boundary conditions on the vertical y-axis which fix displacements in x-direction as well as 

rotations of any kind (figure 5). 

 

  

Figure 5. The half of full-scale model with applied boundary and 

loading conditions, and with the seam crack in the ΔK case. 

 

The material behaviour is assumed to be purely linear elastic; only a small plastic zone at the crack 

tip is expected (figure 7), therefore, no plastic material data are necessary to be used. The isotropic 

material data for the specimen made of conventional mild carbon steel were adopted from the study of 

Božić et al. [3]. The material parameters applied to both models are: Young modulus E = 206 GPa, 

Poisson’s ratio 𝜈 = 0.3, yield stress Re = 235 MPa and shear modulus G = 80 GPa. It is opportune to 

introduce the experimentally obtained Paris law constants for the selected material in order to provide 

validation data for the numerical results that follow later; m = 2.75 and C = 1.43x10-11 [3]. 

As the material data, loading and boundary conditions were taken from [3]. The testing specimen 

was exposed to constant amplitude cyclic tension load in a hydraulic fatigue testing machine. The load 

was applied to the pin which was placed in the hole in the upper part of the model while the pin in the 

Seam crack

F



6

1234567890

6th International Conference on Fracture Fatigue and Wear  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 843 (2017) 012042  doi :10.1088/1742-6596/843/1/012042

 

 

 

 

 

 

lower hole was fixed (figure 5). The force range and the stress ratio applied to the half-model are denoted 

by F = Fmax - Fmin and R = Fmin ⁄ Fmax, and were F = 76 800 N and R = 0.0253 [3]. In contrast to the 

experiments, simulations on the macro-models were performed with static loading conditions, however, 

in combination with LEFM for the ΔKs determination and with the Tanaka-Mura equation for the 

determination of da/dN.  

For both models continuum plane stress 4-node bilinear elements with reduced integration and 

hourglass control (CPS4R) were used. In order to deal with the stress singularity at the crack tip in the 

case of ΔKs calculation, special elements have to be used that are able to indicate the infinite stresses 

properly. In ABAQUS this is done by collapsing one side of an 8-node isoparametric element connected 

to the crack tip [17], as can be seen in figure 7. 

2.2.  Submodel (microstructural model) details 

The submodel or microstructural model is placed right at the tip of the global model structural cracks 

(table 1) where their extension is expected. As already mentioned, the Tanaka-Mura equation is typically 

used to estimate the duration of the short crack initiation stage. In this paper, however, the equation is 

applied within the microstructural model (figure 6) with the aim to estimate the rate of the infinitesimal 

crack extension. The geometry of the submodel can be seen in figure 6, as well as the location where it 

is placed with respect to the global model. Its size is selected to 0.4 mm x 0.4 mm including the tip of 

the structural crack of 0.1 mm radius, which can be identified as a notch. As mentioned before, 

displacements of the global model are applied to the coinciding edges of the submodel, marked bold in 

figure 6. 

 

 

Figure 6. Geometry of the submodel containing a microstructure of 

the material and its location with respect to the global model. 

 

Moreover, the submodel takes into consideration the microstructure of the investigated material and 

its influence on the crack growth rate in the initial extension phase. Accordingly, the submodel is 

partitioned into individual grains using the random Voronoi tesselation. Each individual grain possesses 

a local coordinate system (figure 6) and individual slip band orientation. The resulting average grain 

size, i.e. average slip band length is 50 µm, what is appropriate for the used material. 

Concerning the material description, the microstructural model requires orthotropic material data, 

i.e. elastic constants of cubic crystals. These constants reflect cubic symmetry where C11 = C22 = C33, 

C12 = C13 = C23 and C44 = C55 = C66, and are calculated using the following equations: C11 = E(1 - 𝜈)/(1 

- 𝜈 - 𝜈2); C12 = E𝜈/(1 - 𝜈 - 2𝜈2); C44 = G. With the isotropic material data from above this gives C11 = 277 

307 MPa, C12 = 118 846 MPa and C44 = 80 000 MPa. Furthermore, the microstructural model enriched 

with the Tanaka-Mura equation requires two additional material properties, namely the critical resolved 

shear stress (CRSS) and the crack initiation energy (𝑊𝑐). With respect to this, the following values were 

applied: CRSS = 117 MPa [15] and 𝑊𝑐 = 69 N/mm [18]. 

Submodel
Global model

Zoomed view
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The submodel was very fine meshed with the same elements as the global model (CPS4R); what in 

the end gives smooth stress distribution in the undamaged as well as in the damaged submodel (figures 

9-12). To depict the mesh fineness, a single grain has 120 elements in average. 

3.  Results 

The stress intensity factor ΔK as well as the J-Integral and other fracture mechanics characteristics, 

can be requested in ABAQUS as history output data. In order to get ΔK for each individual crack of six 

in total from table 1, the same number of variations of the macro-model were modelled. Figure 7 gives 

the von Mises stress distribution at the crack tip of a macro-model. As already mentioned in Chapter 2, 

the geometry itself with the structural pre-crack stays the same for all variations, however, the used seam 

length varies. By evaluating ΔK for each crack length and putting the results into a common diagram 

gives the expected linear relationship (see region II in figure 2) between ΔK and the crack length a 

(figure 8). 

 

 

Figure 7. Stress field at the crack tip of the macro-model that is used 

to calculate the ΔK values. 

 

 

Figure 8. ΔK in dependence of the crack length. 

 

In the submodel, the crack can form in a grain on different slip bands depending on the grain 

orientation, i.e. on the stress field inside and in the vicinity of the grain – generally, the stress field in 

the microstructural model (figures 9-12) is influenced by boundary conditions (displacements from the 

global model), microstructural configuration (i.e. orientation and shape of crystals), elastic constants 

and geometrical factors (notch, formed cracks etc.). The slip bands of a certain grain have the same 
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orientation and are distanced one from each other with an offset. Furthermore, each slip band is divided 

in four segments meaning that a crack does not form instantaneously through the whole grains but it 

forms in a segmental manner. The condition for the formation of crack segments is contained in the 

Tanaka-Mura equation (2) and it reads as follows: the average shear stress ∆𝜏̅ on a slip band segment 

needs to exceed two times the CRSS. Additionally, the equation (2) gives the number of cycles dN (i.e. 

Ns) that are spent for every formed crack segment. Furthermore, after the crack condition has been 

satisfied in one step, the model gets updated with the latest crack and remeshed in the following step 

where the condition is applied again and a new weakest crack segment is traced.  

The von Mises stress state before the first formed crack segment is shown in figure 9. Figures from 

10 to 12 show the stress states after 5, 15 and 25 broken crack segments. Those four figures show the 

simulation results for the crack length of 20.1 mm. Results for other considered structural cracks from 

table 1 are principally similar and, therefore, not shown in the paper. 

 

 

 

 

Figure 9. Von Mises stress distribution in 

the undamaged microstructural model  

(a = 20.1 mm). 

 Figure 10. Microstructural model with 5 

broken crack segments. 

 

 

 

Figure 11. Microstructural model with 15 

broken crack segments. 

 Figure 12. Microstructural model with 25 

broken crack segments. 

 

Generally what happens for all considered structural cracks is that the formation of cracks in the 

submodel ceases after a certain number of steps – the number varies from one model setup to another. 

The reason for this is that grains that are favourable for cracking on the basis of the aforementioned 

condition fade out. 

In order to determine the fatigue crack growth rate da/dN, both the cycles dN and the accompanying 

length da of each individual crack segment that formed in the microstructural model have to be 

determined. The crack length da can easily be quantified using the ABAQUS graphical interface or can 

be rather gathered from output data. 

By taking the measured da and the correlated dN one can evaluate the growth rate da/dN for each 

step. It is necessary to indicate that the common growth rate da/dN is not a constant value, but it 

fluctuates as it can be seen in figure 13 for the case of the 20.1 mm long structural crack. It can be 

noticed that figure 12 contains 25 broken segments while only 11 are considered in figure 13 where 
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da/dN is plotted. An explanation for this is that starting from step 12 in figure 13 the number of required 

cycles for further formed cracks becomes significantly higher, meaning directly that the da/dN drops 

down to a negligible value. This leads to the assumption and consequence that the crack growth rate 

should be neglected in this relatively advanced stage. 

 

 

Figure 13. Crack growth rate in relation to the number of broken 

segments for the extension of the 20.1 mm long structural crack. 

 

In order to get a typical da/dN versus ΔK plot as in figure 2, the fluctuating crack growth rate from, 

e.g. figure 13, needs to be averaged. For the structural crack length of 20.1 mm this results in da/dN = 

8.49421x10-9, which seems to be appropriate according to literature [3, 19]. This averaged growth rate 

can be considered as extensional growth rate for the structural crack. The same procedure was applied 

for remaining structural crack lengths. Finally, the results for da/dN and for ΔKs (figure 8) are put into 

a common log da/dN versus log ΔK diagram, figure 14. The resulting six single points were interpolated 

with a straight line from which the material constants of Paris equation (1) were determined, the slope 

of the line is m = 2.75 and the y-axis intercept C = 3.8x10-12, which agree quite well with the 

experimentally determined values of m = 2.75 and C = 1.43x10-11 [3].  

 

 

Figure 14. Extensional crack growth rate da/dN of different structural 

cracks versus ΔK of the same cracks. Data are shown in log-log scale. 
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4.  Discussion and conclusions 

The aim of this paper was to numerically determine the Paris law material constants C and m and this 

was successfully accomplished by applying a two-scale model. Namely, stress intensity factors for six 

different structural cracks were calculated using the macro-model based on classical LEFM. In the 

second part, the fatigue crack growth rates at the tips of same structural cracks were determined by using 

the microstructural model enriched by the Tanaka-Mura equation.  

Having determined the stress intensity factors and the crack growth rates separately, the values have 

been visualized afterwards in the common log-log diagram (figure 14). Considering that the Paris law 

can be approximated by a straight line in the diagram for the case of stable crack growth, the material 

constants have been determined then as m = 2.75 and C = 3.8x10-12. 

Since this study was the first, to the authors’ knowledge, attempt to determine the Paris constants in 

a numerical way as well as taking into account the microstructure of the material, and considering that 

the literature values of the investigated material (m = 2.75 and C = 1.43x10-11) match the numerically 

obtained ones quite good, the study and its working hypothesis seem to prove their worthiness. It is to 

be supposed that the results determined here may even become better during further research. 

References 

[1] Esslinger V, Kieselbach R, Koller R and Weisse, B 2004 Eng. Fail. Anal. 11(4) 515-35 

[2] Paris P and Erdogan F 1963 J. Basic Eng. 85(4) 528-33 

[3] Božić Ž, Mlikota M and Schmauder S 2011 The. Vjesn. 18(3) 459-66 

[4] Broek D 1988 The Pratical Use of Fracture Mechanics (Dordrecht: Kluwer Academic Publishers) 

[5] Branco R, Antunes F, Ferreira JM and Silva M 2009 Eng. Fail. Anal. 16 631-38 

[6] Branco R, Antunes F, Costa D, Yang FP and Kuang ZB 2012 Eng. Fract. Mech. 96 96-106 

[7] Carrascal I, Casado J, Diego S, Lacalle R, Cicero S and Alvarez J 2014 Polym. Test. 40 39-45 

[8] Chauhan S, Pawar AK, Chattopadhyay J and Dutta BK 2016 T. Indian I. Metals 69(2) 609-15 

[9] Ancona F, Palumbo D, Finis RD, Demelio G and Galietti U 2016 Eng. Fract. Mech. 163 206-19 

[10] Szata M and Lesiuk G 2009 Arch. Civ. Mech. Eng. 9(1) 119-34 

[11] Tanaka K and Mura T 1981 J. Appl. Mech. 48(1) 97-103 

[12] Tanaka K and Mura T 1982 Metall. Trans. A 13(1) 117-23 

[13] Jezernik N, Kramberger J, Lassen T and Glodez S 2010 Fatigue Fract. Eng. M. 33(11) 714-23 

[14] Glodez S, Jezernik N, Kramberger J and Lassen T 2010 Adv. Eng. Softw. 41(5) 823-29 

[15] Božić Ž, Schmauder S, Mlikota M and Hummel M 2014 Fatigue Fract. Eng. M. 37(9) 1043-54 

[16] Mlikota M, Schmauder S, Božić Ž and Hummel M 2017 Fatigue Fract. Eng. M. (accepted) 

[17] SIMULIA ABAQUS Documentation 

[18] Roos E and Eisele U 1988 J. Test. Eval. 16(1) 1-11 

[19] Božić Ž, Schmauder S and Mlikota M 2011 Key Eng. Mater. 488-489 525-28 

 


