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Abstract. Adhesive joining has many merits over traditional joining techniques. However,
adhesive joints are susceptible to damage and degradation caused by service loading. If such
degradation went undetected, serious structural failures and catastrophic outcome might follow.
It is difficult and economically unviable to carry out regular examination on the joint integrity
using conventional non-destructive evaluation techniques, especially in the case of practical
structures with large scale adhesive joining. In this work, optical fibers with Bragg grating
(FBG) sensors embedded in single lap joints has been demonstrated to be able to detect internal
damage caused by monotonic and cyclic loading. FBG sensor works by reflecting specific
wavelengths from a broad spectrum incident light. The wavelengths reflected depend on the
strain on the FBG. Internal damages will perturb the strain field in the joint and thus change the
shape of the reflected FBG spectrum. With embedded FBG sensors, it is possible to achieve
on-line monitoring of the joint integrity in an economical way.

1. Introduction
Traditional joining using bolts or rivets requires stress concentrating holes to be drilled in a structure.
Joining by welding may degrade the materials in the heat affected zone. These shortcomings may be
overcome by using adhesive joining [1-3]. The availability of adhesive joints also allows light alloys
and fiber reinforced composites structures to overcome the problems of weak out-of-plane bending
strength/stiffness, low joint toughness while improving their crash-worthiness associated with
traditional joining. However, occasional overloading and fluctuating service loading may degrade
these joints. If such degradation went undetected, serious structural failures and catastrophic outcome
might follow.

Non-destsructive examination (NDE) techniques such as ultrasonic scan are commonly used to
examine the integrity of adhesive joints [4-9] and neutron irradiation was found to be more effective
than ultrasonic to detect internal damages in a joint [9]. The use of thermography [10] and
shearography [11] has also been proposed. Current NDE techniques can detect debonding readily but
cannot reliably detect all internal defects and degradation of an adhesive joint [12, 13]. For example, a
kissing joint that has full interfacial contact but does not possess the required structural strength is
difficult to detect using the current techniques [14]. Moreover, It is economically unviable to carry out
regular examination of the joint integrity using traditional NDE techniques, especially in structures
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with large scale adhesive joining. On the other hand, strain gages had been employed for monitoring
the integrity of the joint in an adhesive patch repair. The latter method not only allows continuous
monitoring but also is much more economical than periodic examination of the whole bonded region
using ultrasonic techniques [15]. However, as strain gages can only be applied to the outer surface,
they are susceptible to environmental degradation and may not possess sufficient fatigue life for long
term monitoring [15]. Optical fiber sensors are known to have much better fatigue strength. They can
be embedded inside the bond and relatively free from environmental attack. The feasibility of using
fiber Bragg grating (FBG) sensors for monitoring has been investigated in this work.

2. Material and methods

2.1. Fiber Bragg Grating sensor and its basic properties
When a broadband light is coupled into an optical fiber with a uniform Bragg grating, a single peak
with wavelength λ satisfying the Bragg diffraction criterion will be reflected:

where ne is the effective refractive index and Λ is the periodicity of the grating. When either or both of
the ne and Λ change, the center wavelength of the reflected spectrum shifts. Λ will be changed if the
FBG is subjected to a deformation. Such deformation may be caused by mechanical or thermal strains.
ne will be affected by variation in temperature and the triaxial stress state acting on the fiber. If the
FBG is subjected to a non-uniform strain field, uniformity of the grating period is perturbed, the single
peak reflected spectrum will broaden or chirped. In general, the reflected wavelength will shift by
~1pm under a strain of 1 με or a temperature change of 0.1oC. If temperature variation is negligible,
the change in the spectrum basically reflects a change in the stress/strain status along the FBG.

FBGs used were fabricated in a Ge–B co-doped single mode fiber by side writing using a phase
mask with a period of 1.05 μm. The sensing length of the FBGs was about 10 mm. The reflectivity of
the resulting FBG was about 99%, and the peak wavelengths were between 1545 and 1547nm. The
FWHM (full width half maximum) of the FBGs was about 0.175 nm. The reflected spectra from the
FBGs were interrogated using an optical spectrum analyzer (Anritsu MS9710C OSA) .

2.2. Single lap joint specimens
6061-T6 aluminum strips were glued together with Loctite E-30CL structural epoxy adhesive to forms
single lap joint specimens (Fig.1). Optical fibers with FBG are embedded at either 0o (parallel to
loading direction), 45o or 90o in the lap joint as shown schematically in Fig.2. The sensor designation

Fig.1 Dimensions of the single lap joint specimen.
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is in the form DnPx, where n represents the orientation angle and x denotes the location. x may take
the letter E (edge), L(left), M(middle) or R(right). The relative positions of these locations are
indicated in Fig.2. The bond line is approximately as thick as the diameter of the optical fiber, i.e. 125
μm. The specimens were subjected to tensile or cyclic loading. Testings were interrupted periodically
to allow the reflected light spectra from the FBGs to be recorded at the instantaneous loading and at 0
N. These spectra were compared with the respective original spectra before testing. The recorded
spectra covered a span of 10 nm to ensure the characteristic FBG wavelength was totally included.
For each set of testing conditions, the tests have been repeated at least three times to ensure the results
are consistently reproducible.

Fig.2 Different layouts of the FBG sensors in the adhesive bond.

3. Results and discussion

3.1. Damage monitoring during tensile tests

3.1.1. Sensitivities of different FBG orientations in response to damage under tensile tests. Fig.3
shows the spectrum from the 45o FBG configuration (Fig.2a) under different loading. As the applied
tensile loading on the specimen increased, the FBG spectra initial shifted to the longer wavelength and
eventually chirped and changed shape significantly. The reflected wavelengths from an FBG are
affected by the strain acting on the FBG. The presence of internal damages will perturb the strain field
in the joint and thus change the shape of the reflected FBG spectrum. On the other hand, loading the
specimen will stress the joint and cause a wavelength shift of the spectrum. Non-uniform strain
induced by stress concentration near the edges of the joint will chirp or even split the spectrum. To
differentiate spectrum change caused by damage from the latter effects, spectra were recorded with the
specimens fully unloaded after loading to different levels.

On unloading from 90% of failure load, the FBG spectrum started to show slight change in shape
(Fig.3b), suggesting the existence of internal damages in the adhesive bond at this load level. Damage
became more intensive on loading up to 95% of failure load and thus induced a more significant
change in the FBG spectrum on unloading (Fig.3c).

Fig. 4 shows the spectrum from the 0o and 90o FBG configurations (Fig.2b) under different loading.
For the 0o FBGs, the spectra changed shapes much more heavily (Figs. 4a & b) than the 45o FBG
under similar loading. On the other hand, spectra from the 90o FBG changed very little shape even
near failure (Fig. 4c). The same trends occur in the unloading spectra (Figs. 4d-f). As a result, it may
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be concluded that the 0o FBG is the most sensitive to damage inside the bond and the 90o FBG is the
least sensitive while the sensitivity of the 45o FBG lies in between.

Fig.3 Spectrum measured from the 45o FBG under various loading.

The D0PM unloading spectrum from 87% of failure load (Fig. 4e) showed slightly more well-
defined changes than that from D0PL. Results from two other specimens tested under the same
conditons also exhibited the same phenomenon. This suggests that the 0o FBG located in the middle of
the bond (D0PM) is slightly more sensitive than the one located on the left (D0PL). This may be due
to damages started to occur earlier in the middle.

Fig.4 Spectra measured from the 0o and 90o FBGs under various loading.
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3.1.2. Effect of of FBG locations on sensitivities in response to damage. It is known that stress
concentration occurs near the edges where the adhesive bond lines end in the loading direction. Since
the sensing length of the FBG employed was about 10mm and there was likely a 1mm deviation in
positioning it in the bond, the 0o FBGs in configuration depicted in Fig.2b may or may not touch the
ending edges of the bond. To investigate the difference in sensing sensitivity when the 0o FBG covers
the edge of the bond or well clear of it, a joint overlapping length of 25mm instead of 12.5mm was
used. The D0PM FBG was delibrately placed across one edge so that 2.5mm of it was outside the
bond. On the other hand, the D0PL FBG was placed in the center of the bond so that it was about
7.5mm from either bond edges. As results above suggest that damages may start earlier in the middle,
a 90o FBG (D90PE) was also included and was placed very close to the edge and centered in the
middle instead of on the left. The complete lay out is shown schematically in Fig.2c.

Fig.5 shows the unloading spectra from each FBG after loading up to various loads. The unloading
spectra from the 90o FBG and the 0o FBG well inside the bond showed virtually no change up to 95%
of the failure load. The one straddling one bond edge (D0PM) started to show marked change in the
unloading spectra at 84% of the failure load. This shows clearly 0o FBGs in the vicinity of the ending
edges of an adhesive bond has much greater sensitivity than FBG well clear of the edge.

Fig.5 Unloading spectra measured from the 0o and 90o FBGs using the configuration in Fig.2(c).

3.2. Damage monitoring under fatigue tests
In these tests, the lap joints were 12.5mm in length. FBG layout was similar to Fig.2b except that the
90o FBG was changed to 0o and was placed 4mm from the right side. Also the center of the FBGs were
positioned at the transverse center line of the bond as far as possible so that their ends were within
1.5mm from either ending edge of the bond. The specimens were cycled between 0.156kN and 1.56kN
at a frequency of 5Hz. The minimum and maximum loads corresponds to 4% and 40% of the average
tensile failure load. The resulting average fatigue life was 144860 cycles.

3.2.1. Virgin specimens fatigue testing. Fig.6 shows the unloading spectra from the three FBGs near
the end of fatigue life. For the D0PL FBG, no marked change in the shape of the spectrum occurred
up to 125000 cycles (95% life). At 130000 cycles (98% life), a prominent rise in background intensity
was observed (Fig.6a). The D0PM spectra started to show discernible change at 115000 cycles, or
87% life (Fig.6b). The spectra continued to evolve and at 130000 cycles, it differed quite significantly
from the initial spectrum (Fig.6c). The D0PR spectra started to show slight change at 95000 cycles
(72% life). The change became quite marked at 115000 cycles (Fig.6d) and 130000 cycles (Fig.6e).

Fatigue damage is a highly localized and stochastic in nature. After damage initiated, it develops
slowly under the small cyclic loading and may only affect the FBG in its vicinity. This explains why
some FBG showed spectrum change much earlier and more significantly than the others.

(a) (b) (c)
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Fig.6 Unloading spectra from the three 0o FBGs near the end of fatigue life.

3.2.2. Pre-tensioned specimens fatigue testing. Tensile loading was applied to two batches of
specimens. In the first batch, applied loading was increased stepwise until the unloading spectra of all
three 0o FBG started to show discernible changes. In the second batch, stepwise increase of the applied
loading was just stopped short of causing discernible change in the unloading spectra. Fig.7 shows the
spectra of one specimen in the first batch unloaded from a maximum load of 2500 N, which
corresponds to about 63% of the average tensile failure loading. On fatigue cycled between 0.156kN
and 1.56kN, it got a life of 34600 cycles, significantly shorter than the average life of 144860 cycles.

A specimen in the second batch was loaded to 2000N, which corresponded to about 50% of the
average tensile failure loading and was higher than the maximum cyclic loading of 1560N. The
unloading spectra from all three 0o FBG showed no discernible changes. Follow up fatigue test gave a
life of 137250 cycles, which is within the scatter of the virgin specimen fatigue life.

Fig.7 Unloading spectra from the three 0o FBGs which just started to show discernible changes.
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4. Conclusions
FBG sensor embedded in an adhesive bond is able to detect the occurrence of internal bond

damages due to tensile and fatigue loading and the signal is exhibited as a change in shape of its
reflected spectrum under the load free condition. A 0o FBG aligning with the loading direction is more
sensitive to bond damage detection than a 45o one. A 90o FBG is the least sensitive among the three.
The 0o FBG detects bond damage sooner when it is straddling the ending edge of of the bond than
when it is well clear of the edges. When the unloading spectra from a 0o FBG in a pre-tensioned
specimen showed discernible change in shape, its fatigue life is significantly reduced when compared
with the one that has not yet showed discernible change.
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