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Abstract. This study deals with the problem of multiple edge cracks in an elastic orthotropic 

half-plane under transient loading. The dislocation solution is utilized to derive integral 

equations for multiple interacting edge cracks in an orthotropic half-plane. These equations are 

solved numerically thereby obtaining the dislocation density function on the crack faces and 

stress intensity factors at crack tips. Numerical results are obtained to illustrate the variation of 

the dynamic stress intensity factors as a function of crack length and material properties. 

1. Introduction 

With the growing use of composites in great variety of engineering structures, in recent years the 

problems regarding their structured intensity and failure have been studied extensively. In the case of 

dynamic loads, two loading cases are of interest, harmonic loading and impact loading [1]. Various 

attempts have been made to analyze half-plane weakened by cracks under harmonic load. Impact loads 

applied on cracked structures may cause catastrophic failure. It is therefore, of great importance to 

investigate the transient response of cracked materials. The stationary semi-infinite crack under 

uniform step loading in the crack faces was considered first by Maue [2]. Loeber and Sih [3] 

investigated the dynamic stress intensity factor for a finite crack in the infinite plane under anti-plane 

deformation. Ma and Hou [4] investigated the response of an elastic solid containing a crack subjected 

to suddenly concentrated point loads acting at a finite distance from the crack tip. Wang et al. [5] 

obtained the dynamic stress intensity factor for mode III loading. They analyzed the anti-plane 

response of a non-homogeneous composite material containing several cracks subjected to dynamic 

impact. The failure behavior of fiber reinforced composites involving cracked matrix and imperfectly 

bounded fibers under dynamic anti-plane loading was investigated by Meguid et al. [6]. Results show 

the effect of the interaction between a main crack and a completely debounded fiber upon the dynamic 

stress intensity factors. The transient dynamic stress intensity factor was determined for an interface 

crack between two dissimilar isotropic viscoelastic bodies under impact loading by Wei et al. [7]. The 

transient response of an infinite orthotropic material with finite crack under point loading was studied 

by Rubio et al. [8]. Chen et al. [9] investigated the transient response of the internal crack in a 

functionally graded orthotropic strip. Results show the effects of the material parameter, the crack 

configuration and the orthotropic property on the dynamic stress intensity factors. Shul and Lee [10] 

considered a subsurface crack in a functionally graded coating layer on the layered half-space 

subjected to an anti-plane impact load. Lira-Vergaraand Rubio-Gonzalez [11] analyzed the transient 

response of an non-homogeneous orthotropic material with an interfacial finite crack under shear 

impact load. The problem of a homogeneous linear elastic body containing multiple collinear cracks 

under anti-plane dynamic load was considered by Wu et al. [12]. However, those previous solutions 

only considered the embedded or edge crack with simple shape and patterns. Monfared and Ayatollahi 

[13], investigated the scattering of anti-plane harmonic stress waves by multiple cracks in an 

orthotropic half-plane. 

In this paper, we consider the problem of an orthotropic half-plane with multiple edge cracks The 

main purpose is toprovide an analytical treatment to investigate the transient behavior of orthotropic 

half-plane under transient load, which is important for the design and numerical simulation of 

composite structures. Based on the use of integral transforms, the problem is reduced to a singular 

integral equation, which can be solved using Chebyshev polynomial expansions. Numerical results are 

provided to show the effect of cracks interaction and material property on the stress intensity factors 
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2. Problem statements 

We consider an orthotropic half-plane containing a screw dislocation under anti-plane deformation. A 

Cartesian coordinate is assumed in such a way that the x and y axes are taken as directions of principal 

material orthotropy and y-axis is along dislocation path. The constitutive equations for anti-plane 

problem of the orthotropic material are as follows: 

( , , ) ( , , )
( , , ) , ( , , ) .zx zx zy zy

w x y t w x y t
x y t G x y t G

x y
 

 
 

 
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where zxG  and zyG  are elastic constants. In the absence of body force the equation of motion is: 
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where
2

ls  is wave slowness defined by ll cs /1  and lc  being the shear wave speed, zyzx GGf  , 

l zxc G   and   is the mass density. The conditions representing a Volterra-type screw 

dislocation located at the positive part of the y-axis in an orthotropic half-plane are 
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where, (.)H  is the Heaviside step function, ( )zb t  is the time dependent Burgers vector. The second 

Eq. (3)impliesthe continuity of traction crossing the dislocation line. Employing the symmetry of the 

problem with respect to the y-axis, Equation (2)may be solved in the x> 0. The boundary conditions 

for the half-plane are: 
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The solution to equation (2) is achieved by means of integral transforms. The Laplace and Fourier sine 

transforms are applied to Eq. (2), assuming that the orthotropic half-plane is initially stationary, leads 

to: 
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The general solution of (5) is: 
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where
2 2 2

ls p   , the functions 1( , )A p , 1( , )B p  and 
2
( , )B p are unknown functions. By 

using the inversion of the Fourier sine transform of Eqs. (6), the anti-plane displacement in the 

Laplace domain can be obtained as: 
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From Eqs. (1) and (7), the stress components in Laplace domain may be written as: 
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In order to specify the singular behavior of the stress components, the asymptotic behavior of the 

integrands in (8) should be examined. The singular parts of the kernels in the first relation of Eq. (8 ) 

can be separated after performing the appropriate asymptotic analysis and use the table of integral 

transforms [14]. Eq. (8) may be recast to more appropriate forms: 
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The details of the analysis will not be given in this paper. We observe that stress components are 

Cauchy singular at the dislocation position, which is a well-known feature of the stress fields caused 

by Volterra-type dislocations. 

    

 

3. Orthotropic half-plane weakened by multiple edge cracks 

   The dislocation solutions accomplished in the foregoing section is extended to analyze orthotropic 

half-plane with several edge cracks. Cracks configurations are presented in parametric form as  

( ) , 1 1

( ) , 1,2,...., .

i i i

i i

x x l

y y i N

  



    

 
      (10) 

To derive the integral equations for the crack problem, covering the crack faces by dislocations with 

unknown densities ( , )zb p  in an orthotropic half-plane. By use of Buckner principle [15] the integral 

equation for N edge cracks is 

1
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Employing the definition of dislocation density function, the equations for the crack opening 

displacement across the jth crack reads: 

1
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The numerical inversion of Laplace transform is carried out via Stehfest's method [16].  
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Stress fields for the cracks in orthotropic materials are singular at crack tips with a square-root 

singularity; Hence, the dislocation density functions for edge cracks can be represented by 

ln 2 ln 2 1
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We substitute Eq. (14) into the Eq. (13) and apply the numerical technique developed by Erdogan [17] 

for the solution of integral equations to solve the resultant equations. The inverse Laplace transform of 

the solution becomes  
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ln 2 ln 2
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zj n zj
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The stress intensity factor for jth edge crack is [18]: 

( ( )) ( 1, ), 1,2,..., .III j j zx zy zjk t l G G g t j N      (17) 

4. Numerical results and discussion 

In all the proceeding examples, The quantities of interest are the dimensionless stress intensity 

factors, 0/)( ktk . For convenience, the dynamic stress intensity factors are normalized by 

0 0 2k a ,except example 2 where 0 0 1 2k a ,for uniform shear traction. 

In the first example, an orthotropic half-plane under constant shear traction )(0 tHzy    weakened 

by an edge crack with length 0.5a h  is analyzed, Fig. 1. The deviser for normalizing time is 

0 2 lt a s , where a is the crack length. It is seen that, the dynamic stress intensity factor increases 

very quickly with time, reaching a pick then decreases in magnitude and tends to the quasi static 

solution for sufficiently large normalized time. From Fig. 1, we may conclude that dynamic stress 

intensity factor of the edge crack exhibit small variations versus zx zyf G G . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Variation of normalized dynamic stress intensity factor of an edge crack. 
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In the next example, let us consider an orthotropic half-plane weakened by two unequal length edge 

cracks under anti-plane impact load, we study effects of the cracks location on dynamic stress intensity 

factors of crack tips Fig. 2. Note that, the variation of stress intensity factors of the tips 
2L  is 

significant and the times at which the maxima of dynamic stress intensity factor occur for the tip 1L  

are shorter than that the tip 
2L . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig . 2. Variation of normalized dynamic stress intensity factor of two parallel edge cracks. 
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Fig. 3. Variation of normalized dynamic stress intensity factor of three identical parallel edge cracks. 

 

Three equal-length cracks which are normal to the boundary are shown in Fig. 3. The problems are 

symmetric with respect to the y-axis. For other values of crack distance similar plots with different 

values of 0/)( ktk  may be obtained. As it was expected, the variation of stress intensity factors of 

three interacting crack tip namely 1L is more pronounced than that of the tips 
2L . 

 

5. Conclusions 

The dynamic response of an orthotropic half-plane with multiple edge cracks is studied analytically 

under the action of anti-plane impact loads. It may be observed that, once a solution is available for 

boundary loading with step function time dependence, extension to boundary loading with other time 

dependence is quite simple. According to the calculation results, it is found that the parameters such as 

the time, crack length and material properties have significant influences on the dynamic stress 

intensity factors. To show the applicability of the procedure more examples are solved and the stress 

intensity factors for multiple edge cracks are obtained. 
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