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Abstract. This study is concerned with the treatment of the several edge cracks in a 

functionally graded piezoelectric (FGP) layer under anti-plane mechanical and in-plane 

electrical loading. The edge crack is assumed to be either electrically impermeable or 

permeable. The problem is formulated by using distributed dislocation technique. The 

integral equations are constructed for the analysis of a FGP layer, in which the unknown 

variables are dislocation densities. By use of the dislocation densities, the field intensity 

factors are calculated. Numerical examples are provided to show the effect of the location 

and orientations of edge crack upon the stress intensity factors.  

1. Introduction 
 Piezoelectric materials generate an electric field when subjected to strain fields and undergo deformation 

when an electric field is applied. This inherent electromechanical coupling is widely used in electronic 

industry. The technical applications include wave guides, sensors, phase invertors, transducers. Studies on 

the properties of piezoelectric composites have been carried out by numerous investigators. In particular, 

there is a growing interest among researchers in solving fracture mechanics problems. Because 

piezoelectric composite materials are very brittle and cracked piezoelectric composite materials usually 

contain multiple cracks, the interaction between cracks may significantly affect their fracture behavior. 

There has been significant progress in the study of electroelastic fields disturbed by cracks in 

piezoelectric materials recently. The problem of a finite crack in a strip of FGPM was analyzed by Li and 

Weng [1]. Wang [2] studied a mode-III crack in FGPMs. A FGPM strip with eccentric crack under anti-

plane shear was analyzed by Shin and Kim [3]. Hu et al. [4] and Yong and Zhou [5] studied both the 

impermeable and permeable cracks in a FGPM layer bonded to two dissimilar homogeneous piezoelectric 

half spaces. Zhou and Wang [6] solved an anti-plane shear crack in FGPMs using non-local theory. Jiang 

[7] investigated the fracture behavior of FGPMs with dielectric cracks. Zhou and Chen [8] studied the 

interaction of two parallel mode-I limited-permeable cracks in a FGPM. Interaction between an 

electrically permeable crack and the imperfect interface in FGPM was solved by Li and Lee [9]. Yan and 

Jiang [10] investigated the parallel cracks in FGPMs.  

In the present study, the interactions of multiple edge cracks in a FGP strip investigated using the 

distributed dislocation technique. The Fourier transform was employed to reduce boundary value problem 

to the integral equations. Numerical results are provided to show the effects of the length and distance of 

cracks on the field intensity factors. 

 

2. Formulation of the problem 
Consider FGP layer with the poling axis z occupies the region, and is thick enough in the z-direction to 

allow a state of anti-plane shear. The FGP layer containing a Volterra-type screw dislocation with the line 

of dislocation parallel to the edges of the layer is analyzed. The piezoelectric boundary value problem is 

simplified considerably if we consider only the out-of-plane mechanical and the in-plane electric fields 

such that:  

0, 0, ( , )u v w w x y    
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( , ), ( , ), 0.x x y y zE E x y E E x y E      (1) 

In this case, the constitutive equations for the piezoelectric material can be expressed as  
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where 44 ( )c y  is the elastic stiffness measured in a constant electric field, 15 ( )e y  is the piezoelectric 

constant and 11( )y  is the dielectric measured at a constant strain. The elastic displacement and electric 

potential must satisfy the governing equations as follows: 
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The material properties of the FGP layer are adopted as follows: 
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where   is the non-homogeneous material constant and ],,,[ 0110150440 ec  are values at the plane 0y  . 

The above assumption is unrealistic for all the material properties, however it would allow us to shed 

some light on the influence of the material gradient upon the stress intensity factors. Under the above 

consideration, the governing equations can be simplified to the following forms: 
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With the use of Bleustein function  

( , ) ( , )x y w x y         (6) 

In which 110150  e , Eqs. (5) can be written as follows: 

2 2 0
w

w
y




  


, 

2 2 0.
y


 


  


        (7) 

where 
2

44 440 150 110( )c c e    is the piezoelectric stiffened elastic constant. The constitutive equation (2) 

can be written as follows 
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From the physical viewpoint, two electrical crack boundary conditions have been commonly used to 

describing the fracture behavior in the piezoelectric materials, permeable and impermeable ones. Of these 

extreme cases for the crack boundary conditions where permittivity of these cracks are assumed to be 

infinite and zero for a slit-like crack,respectively. For impermeable case, by the using equation (6), the 

following conditions for screw dislocation are considered, 
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where in Eq. (9) mzb  and pb  designate dislocation Burgers vectors. Although the jump in the electric 

potential is not a type of dislocation, it is referred here as electric dislocation for convenience. To solve the 

problem stated above, it is convenient to employ Fourier transforms to Eqs. (7) and (9). Let the solutions 

of Eqs. (7) be given by: 

 
( ) sinh[ ( )]

( , ) ( ( ) ) cosh sinh
4 sinh( )

y
i xmzb e h

w x y i y y e d
h

 
 

       
  

 





  

  y0  
( )

( )sinh( )
( , ) ( ( ) )( cosh[ ( )] sinh[ ( )])

4 sinh( )

y
i xmzb e

w x y i y h y h e d
h

 
 

       
  

 





    

 hy   

 
( )

( )
( ) sinh[ ( )]

( , ) ( ( ) ) cosh sinh
4 sinh( )

y

p mz i x
b b e h

x y i y y e d
h

 

 
  

        
  

 






 
  

   y0  

 

( )

( )

( )
( , )

4

sinh
( ( ) )[ cosh( ( )) sinh( ( ))]

sinh( )

y

p mz

i x

b b e
x y

i y h y h e d
h

 

 







       

 

 









    

  

     hy      (10) 



4

1234567890

6th International Conference on Fracture Fatigue and Wear  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 843 (2017) 012014  doi :10.1088/1742-6596/843/1/012014

  

where 
2 2,    . In this case, with the aid of constitutive equations the stress and electric 

displacement components are as follows: 
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It may be seen that the integrals in (11) are bounded at 0  . If we further observe that the integrands in 

(11) are continuous functions of  , it is then clear that any singularity the kernels must be due to the 

asymptotic behavior of the integrands as   approaches infinity. By adding and subtracting the 

asymptotic expressions of the integrands, we find: 
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We may observe that stress components exhibit the familiar Cauchy-type singularity at dislocation 

location. 

The dislocation solutions accomplished in the preceding section may be employed to analyze FGP layer 

containing several edge cracks with any arrangement. A crack configuration with respect to coordinate 

system x, y may be described in parametric form as: 

( )

( ) 1,2,..., 1 1

i i

i i

x x s

y y s i N s



    
    (13)

 

Next, covering the crack surfaces by dislocations, the principle of superposition is invoked to obtain the 

tractions on a given crack surface. The anti-plane traction and electric potential components on the face of 

the ith crack due to the presence of distribution of the above-mention dislocations on all N cracks yields.  

dtltBtsKtBtsKsysx jpjijmzj

N

j

ijiiyz )](),()(),([))(),(( 12

1

1

1

11 



  

dtltBtsKtBtsKsysxD jpjijmzj

N

j

ijiiy )](),()(),([))(),(( 22

1

1

1

21 



  (14) 

By virtue of Bueckner’s principle (see, e.g., Hills et al., 1996), the left hand side of Eqs. (14) are stress 

components and the electric displacement at the presumed location of the cracks with negative sign, which 

implies impermeable crack boundary conditions. From the definition of density function, the equation for 

the crack opening displacement and electric potential across jth crack become 




 

s

mjjjj dttBlswsw
1

)()()(  




 

s

jpjjj dttBlss
1

)()()(       (15) 

For the edge cracks, taking the embedded crack tip at 1t , the dislocation densities may be expressed 

as: 

( ) ( ) 1 1 , 1 1, { , }kj kjB t g t t t t k m p          (16) 

The parameters )(tg jk  are obtained by solving the system of equations (14, 16). The stress and electric 

intensity factors for edge crack take the forms 
1 1

2 2 2 24 4
44 15( ) ( ) [( ( 1)] [ ( 1)] ( 1) ( ) [( ( 1)] [ ( 1)] ( 1)m

III Li Li i i mi Li i i piK c y x y g e y x y g                    

1 1
2 2 2 24 4

15 11( ) ( ) [( ( 1)] [ ( 1)] ( 1) ( ) [( ( 1)] [ ( 1)] ( 1)D

III Li Li i i mi Li i i piK e y x y g y x y g                    

             (17) 
For brevity, the details of the derivation of fields intensity factors are not given here. 
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3. Numerical results and discussion 

The analysis developed in the preceding section allows the consideration a FGP layer with any number of 

cracks with different shape and orientations. In the computational procedure, we consider the PZT-4 

piezoelectric ceramic of which material properties are given as follows: 

3

3

0

10

112152

10

44 105.7,106.64,7.12,1056.2
m

kg

Vm

C

m

C
e

m

N
c     

where N  is the force in Newton, C  is the charge in Coulomb and V is the electric potential in Volt. The 

stress intensity factor is normalized by LK 00   and electromechanical coupling factor that we used is 

defined by 110150 eDecf  . 

The first example is considered the problem of a functionally graded piezoelectric layer weakened by 

an edge crack. The applied loads are constant anti-plane mechanical (σxz=σ0) and in-plane electrical 

loading with magnetiude (D0), while 0.1110150 eD . The plot of the normalized stress intensity factor 

versus crack length for different values of the non-homogeneous parameter (λh=0,1) is shown in Fig (1). 

Increasing the non-homogeneous parameter results in lower stress intensity factor. Fig. (1) also shows that 

the stress intensity factor increases with an increase in crack length for two different electric boundary 

conditions. 

 
Fig. 1. Variation of stress intensity factors for an edge crack versus hL / . 

 

Fig. (2) shows the normalized stress intensity factor,
 

0/ KKM  as function of the non-homogeneous 

parameter L  and for different crack orientations. As it may be observed, the stress intensity factor 

decreases rapidly as L  increases. The similar trend may be noticed for the two different electric 

boundary conditions.  
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Fig. 2. Variation of stress intensity factors for an edge crack versus L . 

 
The effect of crack orientation on the stress intensity factor is examined by considering an edge crack with 

constant length (Fig. 3). As the crack angle increases, the stress intensity factors increase. The maximum 

stress intensity factor for the crack tips occur when the crack surface traction is maximum. The trend of 

variation of stress intensity factor remains the same by changing the FGM constant. 

 

 
Fig. 3. Variation of stress intensity factors for a rotating edge crack. 
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In the next example, the FGP layer containing two parallel cracks with equal length is considered. The 

variations of 0/MK K  with crack length is depicted in Fig(4) for three different crack distances. When the 

distance between the crack tips is minimum obviously experiences higher stress intensity factors.  

 

 
Fig. 4. Variation of stress intensity factors of two parallel edge crack. 

 

In the last example, the interaction between two equal-length edge cracks is examined. The dimensionless 

stress intensity factors versus the crack orientation is shown in Fig. (5). As it was expected, the variation 

of stress intensity factor of rotating crack tip 2L  is more pronounced than that of the tip 1L . 

 

 
Fig. 5. Variation of stress intensity factors of two intracting edge crack. 
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4. Conclusions 

The present work deals with the behavior of a FGP layer containing multiple edge cracks subjected to 

electro-mechanical loads. The dislocation solution is utilized to perform integral equations for FGP layer 

with multiple edge cracks. These equations are of Cauchy singular type solvable by numerical methods to 

obtain dislocation density on the crack surfaces. Numerical calculations are carried out to study the effect 

of the geometry of the several edges cracks and the material properties on the resulting stress intensity 

factor.  
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