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Abstract. This paper presents an approach to calculate dispersion curves for homogeneous and 

isotropic plates subject to stress, via Semi-Analytical Finite Element and the Effective Elastic 

Constants, since stresses in the waveguide modify the phase and group velocities of the lamb 

waves. In the proposed methodology an isotropic specimen subjected to anisotropic loading is 

emulated by proposing an equivalent stress-free anisotropic specimen. This approximation 

facilitates determining the dispersion curves by using the well-studied numerical solution for the 

stress-free cases. The lamb wave in anisotropic materials can be studied by means of the 

Effective Elastic Constants, which reduces the complexity of the numerical implementation. 

Finally, numerical data available in literature were used to validate the proposed methodology, 

where it could be demonstrated its effectiveness as approximated method.  

1. Introduction 

In last years, application of lamb waves in non-destructive tests is of a growing interest 

[1][2][3][4][5][6]. While bulk waves refers to waves propagated in an infinite media, guided waves 

require a boundary for their existence. Furthermore, when a guided wave is produced at least one 

dimension is smaller than the other ones. On the other hand, if the guided wave is propagating in a plate-

like structure, the wave is referred as a Lamb wave. Propagation of lamb waves is a complex 

phenomenon, where phase and group velocity are frequency dependent and it can be graphically 

observed by means of called dispersion curves. The exact trace of the dispersion curves is obtained by 

using transcendent equations assembled by either the transfer matrix or the global matrix methods [7]. 

Recently, the Semi-Analytical Finite Element (SAFE) method has been proposed to compute rapidly 

and efficiently the dispersion curves for any constant cross section specimen. SAFE has been used to 

analyze wave modes in cylindrical waveguides [8][9][10][11], to calculate leaky lamb waves [12], to 

obtain the dispersion curves in a pipe elbow [13] and in materials with viscoelastic properties [14]. 

In SAFE methodology the waveguide is discretized over the cross section, while in an analytical 

solution is in the wave propagation direction. Based on a variational scheme by inserting the kinetic and 

potential energies into Hamilton´s equation, a system of linear equations can be constructed with the 
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circular frequency and wave number as unknowns under stress-free condition. The unknowns can be 

solved using standard eigenvalue routines. Therefore, SAFE approach allows computing dispersion 

curves in waveguides with complex cross sections, such as: multilayered laminates [15] and rails 

[16][17][18][19], where it is often computationally complex to solve analytical solutions. For semi-

infinite waveguides, SAFE has a better performance compared with the traditional FEM due to only the 

constant cross-section is considered, which reduces the computational cost. Additionally, SAFE does 

not have missing roots problem, found in matrix methods, when dispersion curves are computed [20]. 

The dispersion curves in stress-free isotropic and anisotropic specimens have been widely studied 

and can be adequately described based on the theory of elasticity. However, this formulation is 

insufficient to describe wave propagation in specimens under stress since small non-linearities in the 

stress-strain relationships become significant, which can be described by using the acoustoelasticity 

approach. It dictates the stress dependence of acoustic bulk wave velocities propagating in elastic media 

under stress. Few studies on dispersion of waves in a waveguide subjected to axial load using the 

acoustoelasticity have been reported [21][22][23]. On the other hand, the use of SAFE methodology for 

this problem is even more reduced. In [16][24][25] is demonstrated a proportionality between the 

stiffness matrix, required to describe the effect of axial load and the mass matrix, which makes the use 

of existing software (stress-free) trivial to obtain the dispersion curves for waveguides under stress.  

Thus, this paper proposes the use of EEC to describe the anisotropy effect presents in the lamb wave 

dispersion curves when a load is applied along one direction in an isotropic plate, based on the SAFE 

scheme. Then, the isotropic specimen subject to loading in one direction is studied by proposing an 

equivalent stress-free anisotropic specimen. 

2. Plate’s SAFE Analytical Model 

The SAFE methodology is in this case, implemented for an isotropic, homogenous stress-free plate 

(infinitely wide plate), where the wave propagates along direction x with wavenumber 𝜉𝑥 and circular 

frequency 𝜔 (see fig. 1). Since, the cross-section lies in the y–z plane it is formulated as a two-

dimensional problem (x,z) in the plane strain formulation. Thus, the harmonic displacement, stress and 

strain field components in cartesian coordinate at each point of the waveguide are expressed by equation 

(1) 

 

 
Figure 1.  Schematic representation of the plate. 

 

 

𝑢 = [𝑢𝑥  𝑢𝑧]𝑇 ,          𝜎 = [𝜎𝑥 𝜎𝑧  𝜎𝑥𝑧]𝑇 ,            𝜀 = [𝜀𝑥  𝜀𝑧 𝛾𝑥𝑧]𝑇           (1) 

 

The constitutive equation is given by equation (2) 

 

𝜎 = 𝐸𝜀      (2) 

 

where, E is the elasticity matrix (real symmetric matrix for isotropic specimen) defined by equation (3) 
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𝐸 =
2𝐺

(1−2𝜈)
[
1 − 𝜈 𝜈 0

𝜈 1 − 𝜈 0
0 0 (1 − 2𝜈)/2

]        (3) 

 

where G is the shear modulus and 𝜈 the Poisson´s ratio. The strain-displacement relationship can be 

compactly written as follows. 

𝜀 = 𝐿𝑢      (4) 

 

where L is a three-dimensional differential operator defined as equation (5) 

 

L = [
𝜕𝑥 0 𝜕𝑧

0 𝜕𝑧 𝜕𝑥
]

𝑇

     (5) 

 

Thus, the compatibility equations can be written as equation (6) 

 

𝜀 = [𝐿𝑥
𝜕

𝜕𝑥
+ 𝐿𝑧

𝜕

𝜕𝑧
]

𝑇
𝑢     (6) 

where  

 

L𝑥 = [
1 0 0
0 0 1

]
𝑇

,    L𝑧 = [
0 0 1
0 1 0

]
𝑇

    (7) 

 

The cross-sectional domain of the plate, Ω, can be represented by a system of mono-dimensional 

finite elements with domain Ω𝑒, due to the simplification attributed to the waveguide symmetry. The 

displacement expressions, discretized over the element domain, can be written in terms of the shape 

functions 𝑁𝑖(𝑧) and the nodal unknown displacements, (𝑈𝑥𝑖 , 𝑈𝑦𝑖 , 𝑈𝑧𝑖), in cartesian coordinates. Such 

shape functions are considered in this formulation as unidimensional, isoparametrics and quadratics. 

 

𝑢(𝑥,𝑧)
𝑒 (𝑥, 𝑧, 𝑡) = [∑ 𝑁𝑖(𝑧)𝑈(𝑥,𝑧)𝑖

𝑘
𝑖 ]

𝑒
𝑒𝑥𝑝(−𝑖(𝜉𝑥 − 𝜔𝑡)) = 𝐍(𝑧)𝑓𝑒𝑒𝑥𝑝(−𝑖(𝜉𝑥 − 𝜔𝑡)) 

  (8) 

 

where 

 

𝐍(𝑧) = [
𝑁1 0 𝑁2

0 𝑁1 0
    

0 𝑁3 0
𝑁2 0 𝑁3

] ,      𝑓𝑒 = [𝑈𝑥1  𝑈𝑧1  𝑈𝑥2  𝑈𝑧2  𝑈𝑥3  𝑈𝑧3]𝑇  (9) 

 

With 𝑁1 =
𝜂2

2
− (

𝜂

2
), 𝑁2 = 1 − 𝜂2 and 𝑁3 =

𝜂2

2
+ (

𝜂

2
), represented in the local coordinates 

𝜂  𝜖[−1,1]. Consequently, the Jacobian |𝐽| is equal to 𝑙/2, where 𝑙 is the length of the element. For a 

maximum frequency of interest, the mesh criterion of [26] indicates the maximum element length, 𝐿 <
2𝜋𝑐𝑇/𝛽𝜔𝑚𝑎𝑥, where 𝑐𝑇 is the shear bulk wave velocity and 𝛽 is 4 for the case of quadratic elements.  

 

The strain vector in the element can be represented as a function of the nodal displacements: 

 

𝜀𝑒 = (B1 + 𝑖𝜉B2)𝑓𝑒𝑒𝑥𝑝(−𝑖(𝜉𝑥 − 𝜔𝑡))                               

(10) 

 

Where B1 = 𝐿𝑧(𝜕𝑁/𝜕𝑧), B2 = 𝐿𝑥𝑁 
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By considering adiabatic wave propagation, the weak form of the governing balance equation can be 

obtained by applying Hamilton’s principle and adding up the contributions of every element as in the 

standard FE method. The SAFE governing equation for the stress-free plate is obtained as equation (11) 

 

[𝜉2K3 + 𝑖𝜉K2 + K1 − 𝜔2M]𝑈 = 0            (11) 

 

With 

 

𝐊1 = ∑ ∫ 𝐁1
𝑇𝐂𝐁1

1

−1
|𝐽|𝑑𝜂

𝑁𝑒𝑙𝑒𝑚
𝑒=1 , 

𝐊2 = ∑ 𝐓𝑇 [∫ 𝐁1
𝑇𝐂𝐁2

1

−1
|𝐽|𝑑𝜂 − ∫ 𝐁2

𝑇𝐂𝐁1
1

−1
|𝐽|𝑑𝜂] 𝐓

𝑁𝑒𝑙𝑒𝑚
𝑒=1          (12) 

𝐊3 = ∑ ∫ 𝐁2
𝑇𝐂𝐁𝟐

1

−1
|𝐽|𝑑𝜂

𝑁𝑒𝑙𝑒𝑚
𝑒=1 , 

𝐌 = ∑ ∫ 𝐍𝑇 𝜌𝐍
1

−1
|𝐽|𝑑𝜂

𝑁𝑒𝑙𝑒𝑚
𝑒=1 , 

 

where, 𝐊1, 𝐊2, 𝐊3 are the global stiffness matrices and 𝐌 is the global mass matrix, superscript T denotes 

the matrix transpose, 𝑁𝑒𝑙𝑒𝑚 is the total number discretized elements across d and U is the vector of 

global displacements (and also the eigenvectors) at particular circular frequency 𝜔. Transformation 

matrix T is an orthogonal diagonal matrix introduced to eliminate the imaginary term in the 

eigenfunction. The 𝑢𝑧 displacement components in T are equal to 1, while those of 𝑢𝑥 are equal to the 

imaginary unit.  

 

The estimation of dispersion curves is tackled by sweeping the wave number 𝜉 in a set of real values. 

Thus, the eigenfunction can be solved as a standard eigenvalue problem in 𝜔(𝜉). Real, purely imaginary 

and complex eigenvalues are obtained, however only the real one values (that correspond to the 

propagating waves) are considered. In this case, the number of eigenvalues 𝜔(𝜉) obtained is the number 

of total Degrees Of Freedom (DOF) of the system, N. Thus, N propagating modes (𝜉𝑚, 𝜔𝑚)  are 

determined for each UN cross sectional wave structure. The phase velocity of the propagating N mode 

can be computed by 𝐶𝑝
𝑚 = 𝜔/𝜉𝑚, while the group velocity 𝐶𝑔

𝑚 can be calculated using modal properties 

for conservatives materials, equation (13)[27]. 

 

𝐶𝑔
𝑚 =

𝜓𝐿
𝑚𝐊 ,𝜉𝜓𝑅

𝑚

2𝜔𝑚𝜓𝐿
𝑚𝐌𝜓𝑅

𝑚             (13) 

 

where 𝜓𝐿
𝑀 and 𝜓𝑅

𝑀are the mth left and right eigenvectors of the eigenfunction,  𝐊,𝜉 is 2𝜉𝐊3 + 𝐊2 and 

M is the mass matrix. 

3. Dispersion curves using EEC for a uniaxial stressed plate 

Acoustoelasticity is a nonlinear phenomenon that explains speed changes in bulk waves (longitudinal 

and shear) as a function of applied stress, based on the continuum theory for small disturbances. The 

linearization of the relation between stress and strain is no longer valid for the case of ultrasound 

propagation in a media subject to stress and with finite deformations [22].  

For the linear case, only the second order elastic constants λ and µ are needed as parameters to 

describe the linear constitutive relation stress-strain in an isotropic medium. However, for nonlinear 

characterization, additional third order elastic constants (TOECs) have to be added to the constitutive 

relation. Thus, the deformation energy, strain energy function U, has to be expressed in a third order 

form. On the other hand, the relation between strain energy function and stress is used to express the 

nonlinear relation between stress-strain, where this function is expressed as a power series in strains as 

equation (14) 

𝑇𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙
(2)

𝐸𝑘𝑙 + 𝐶𝑖𝑗𝑘𝑙𝑚𝑛
(3)

𝐸𝑘𝑙𝐸𝑚𝑛 + ⋯             (14) 
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where 𝑇𝑖𝑗 is the second Piola-Kirchhoff stress tensor, 𝐸 is the Lagrangian strain tensor and 𝐶(2), 𝐶(3), .. 

are increasing order tensors and correspond to the coefficient of the power series expansion. 𝐶𝑖𝑗𝑘𝑙
(2)

 is the 

second order constants for the linear case, and 𝐶𝑖𝑗𝑘𝑙𝑚𝑛
(3)

 represents the third order elastic constants, for 

the case of isotropic materials. This tensor can be represented in terms of the Murnaghan constants 

𝑙, 𝑚 and 𝑛.[28]. Some papers have shown the use of EECs to tackle the influence of the acoustoelasticity 

in the propagation of guided waves [29][30][31]. 

 

By using a Cartesian frame to describe the incremental stresses, strains and displacements in stressed 

media, three deformation states are defined. Following the notation used by [30], the unstressed frame 

is called the “natural state.” The position of a material point is given by the position vector x whose 

“natural coordinates” are 𝒙1(𝑥1, 𝑥2, 𝑥3, ). “The initial state” is a finite deformation (applied or residual) 

in static equilibrium is then given by the position vector 𝒙̅, whose initial coordinates are 𝒙𝟏̅̅ ̅(𝑥1̅̅ ̅, 𝑥2̅̅ ̅, 𝑥3̅̅ ̅). 
Finally, when a dynamic perturbation (wave propagation) is applied at the initial state, the point material 

reach the third state called the “final state.” The position of the material point is then defined by the 

position vector 𝒙̃ whose “final coordinates” are 𝑥̃1(𝑥̃1, 𝑥̃2, 𝑥̃3). A common Cartesian frame (𝜉1, 𝜉2, 𝜉3) 

is used to refer to the position of material points of any of the three states. The physical quantities, which 

refer to the natural state, are denoted by the superscript O and those that refer to the initial state by the 

superscript I. The initial deformation and the final deformation are denoted by 𝑢̅ and 𝑢̃, respectively. 

Equations (15) and (16) are the equations of motion with initial coordinates and natural coordinates, 

respectively [31], 

 
𝜕

𝜕𝑥𝑗̅̅ ̅
[(𝐴𝑖𝑗𝑘𝑙 + 𝛿𝑖𝑘𝑡𝑗𝑙

𝐼 )
𝜕𝑢̃𝑘

𝜕𝑥𝑙̅
] = 𝜌𝐼 𝜕2𝑢̃𝐼

𝜕𝑡2̅̅ ̅             (15) 

 
𝜕

𝜕𝑥𝑗
[(Γ𝑖𝑗𝑘𝑙 + 𝛿𝑖𝑘𝑇𝑗𝑙

𝑂)
𝜕𝑢̃𝑘

𝜕𝑥𝑙̅
] = 𝜌𝑂 𝜕2𝑢̃𝐼

𝜕𝑡2̅̅ ̅             (16)

  

where 𝐴𝑖𝑗𝑘𝑙 and Γ𝑖𝑗𝑘𝑙 are tensors that depend on the symmetry of the material and describe the relation 

between second and third order elastic constants and the displacements 𝑢̅ with respect to x and 𝑥̅ 

positons, 𝜌 is the density, 𝑡𝐼 is the Cauchy stress tensor, 𝑇𝑂 is the Kirchhoff stress tensor or second 

Piola–Kirchhoff stress tensor and 𝛿 is the Kronecker delta function. In [31], a more detailed analysis of 

𝐴𝑖𝑗𝑘𝑙 and Γ𝑖𝑗𝑘𝑙 is found, where it can be observed that variations of the wavespeed depend of the initial 

stress value and the initial displacement gradient 𝜕𝑢𝑖/𝜕𝜉. Motion equation (16) in natural coordinates 

is equivalent to the equation of motion relative to a stress-free medium. In addition, the use of natural 

coordinates or material’s specific frame avoids problems associated to the splitting terms in the EEC 

when initial coordinates are used. The similarity between these equations allows considering a stressed 

material as an unstressed material with EEC, which takes into account the disturbances linked to the 

presence of stress[30]. This description considers the following formalism: 

 

 𝐶𝑖𝑗𝑘𝑙
𝑎 = 𝐶𝑖𝑗𝑘𝑙 + 𝛿𝐶𝑖𝑗𝑘𝑙            (17) 

 

where, 𝐶𝑖𝑗𝑘𝑙
𝑎  is the tensor of the EEC, 𝐶𝑖𝑗𝑘𝑙 is the tensor of the second order elastic constants for a stress-

free material and 𝛿𝐶𝑖𝑗𝑘𝑙 is the disturbance related to the presence of applied or residual stress. In this 

sense 𝐶𝑖𝑗𝑘𝑙
𝑎  is equal to Γ𝑖𝑗𝑘𝑙 + 𝛿𝑖𝑘𝑇𝑗𝑙

𝑂, which corresponds to the tensor of the EEC in natural coordinates. 

Since, EEC allows the use of the second order approach in the case of stressed materials, they can be 

considered as a stress-free material presenting second-order elastic constants different from those of an 

unstressed material. Under these condition, the eigenfunction that satisfy the guided wave modal 

propagation can be written in the same form as shown in equation (18): 
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|𝐾(𝜉, 𝐶𝑖𝑗𝑘𝑙𝜂𝑗𝜂𝑙) − 𝑀𝜔2| = 0 |𝐾′(𝜉′, 𝐶𝑖𝑗𝑘𝑙
𝑎 𝜂𝑗𝜂𝑙) − 𝑀𝜔′2

| = 0,             (18) 

 

where 𝜔 and ω' correspond to the ultrasonic wave circular frequency in unstressed and stressed media 

respectively, the tensors 𝐾 and 𝐾′ is the elasticity relation for unstressed and stressed materials and 𝜂𝑗𝜂𝑙 

are the direction cosines of the normal to the wavefront, i.e., 𝜉𝑝 = |𝜉|𝜂𝑝. Thus, the symmetry of a 

material will change in the presence of static stress with respect to ultrasonic wave propagation.  The 

terms of 𝐶𝑖𝑗𝑘𝑙
𝑎  are listed in appendix A. 

4. Numerical Validation 

In order to validate the proposed approach, dispersion curves obtained by [31] for an aluminum isotropic 

plate (𝜌 = 2800 𝑘𝑔/𝑚3) of thickness d=6.35 mm with material constants in GPa, 𝑙 = −252.2 ; 𝑚 =
−324.9 ; 𝑛 = −351.2;  𝜆 = 54.9 ;  𝜇 = 26.5, were used. It is a benchmark data from an analytical 

model based on the acoustoelasticity principle. Figure 2 illustrates the used plate Cartesian frames, while 

figure 3 shows the dependence of phase velocity on the direction of propagation, by comparing the S1 

modes about 600 kHz, propagating at varying angles with respect to the 𝑥1′. Herein, analytical solution 

by [31] is represented by solid lines while the proposed approach by markers. Additionally, figure 4 

presents the deviation of S1 mode between the proposed scheme and the previous analytical solution 

 

 

 

 

 

 

 

Figure 2. Plate’s Cartesian frames. 

 

Figure 3. Comparison of angle dependence of S1 mode for a uniaxial load of 120 MPa. 

𝜎22 

𝑥2 
𝑥2′ 

𝑥1′ 

𝑥1 

𝜎11 

𝑥1′ 

𝑥3′ 

d 
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Figure 5 presents the dispersion curves for the S1 mode about 600 kHz by applying different stresses 

values in order to observe the variations of phase velocity respect to the applied load, where all curves 

are at an angle of 𝜙 = 45°. Moreover, figure 6 presents the deviation of S1 mode between the proposed 

scheme and the previous analytical solution in the case of different applied stresses. 

 

 

Figure 4. Deviations between proposed and analytical solution by [31] for S1 mode in [592-608] 

Khz  

 

Figure 5. Comparison of stress dependence of S1 mode for a uniaxial load at φ = 45°. Analytical 

solution by [31] is represented by solid lines while the proposed approach by markers. 

5. Results Analysis 

According to figure 3, the dispersion curves of S1 mode (represented by markers) computed by means 

of EEC approach for a load of 𝜎11 = 120 MPa are close to the analytical solution (based on the 

acoustoelasticity theory). However, this should not be generalized since the deviation of EECs from the 

theoretical model depends on the mode and frequency range under consideration [31]. 

In the case of the stress dependence (figure 4), it can be observed a good agreement in the range of 

analyzed dispersion curves between analytical model based on acoustoelasticity, and combined EEC´s 

and SAFE proposed model. 
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Figure 6. Deviations between proposed and analytical solution by [31] for S1 mode in [592-608] 

Khz  

6. Conclusions 

An approximate method for computing dispersion curves of lamb waves, phase and group velocity, in 

homogenous and isotropic plates under stress based on FEM and EEC is proposed in this work. The 

main contribution of the proposed approximate approach for estimating the dispersion curves of an 

isotropic and homogenous plate is accounting for the stress in the waveguide by using EEC combined 

with an SAFE scheme. These dispersion curves are a relevant tool for NDE/SHM applications, 

especially for identifying propagating modes and locating defects.  

The proposed methodology was validated on several propagation angles and load conditions, which 

were previously examined by an analytical method based on the acoustoelasticity theory. It was found 

slight deviations by comparing the dispersion curves obtained by both solutions (proposed and previous 

method). It is remarked that a sufficient number of elements for discretizing the cross- section of the 

waveguide was ensured, thus, the observed variations can be attributed to limitations of the EEC 

representing the stressed state. 

 The main advantages of the proposed approximate approach on the available analytical methods are 

a low coding complexity and fast execution, with a decent accuracy compared to the previous analytical 

acoustoelasticity based model. 
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8. Appendix A 

 

Expressions for the EEC proposed by [30]  

 

𝐶11
𝑎 = 𝑘2 + 𝑘1[4𝜆 + 10𝜇 + 4𝜈2 + 8𝑣3 + 𝑘3(−2𝜇 + 𝜈1 + 2𝜈2)]  (A.1) 

   𝐶22
𝑎 = 𝐶33

𝑎 = 𝑘2 + 𝑘1[𝑘4 + 𝑘3(𝜆 + 2𝜇 + 𝜈1 + 4𝜈2 + 4𝜈3)]  (A.2) 

𝐶44
𝑎 = 𝜇 + 𝑘1[−2𝜇 − 2𝜈3 + 𝑘3(𝜇 + 𝜈2 + 2𝜈3)]   (A.3) 

           𝐶55
𝑎 = 𝐶66

𝑎 = 𝜇 + 𝑘1[2𝜇 + 𝜈3 + (1 − 2𝜈)(𝜈2 + 𝜈3)]  (A.4) 

𝐶12
𝑎 = 𝐶13

𝑎 = 𝜆 + 𝑘1[𝜆 + 𝜈2 + 𝑘3(𝜈2 + 𝜈1)]   (A.5) 

𝐶23
𝑎 = 𝜆 + 𝑘1[−2𝜆 − 2𝜈2 + 𝑘3(𝜆 + 𝜈1 + 2𝜈2)]   (A.6) 



9

1234567890

12th International Conference on Damage Assessment of Structures   IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 842 (2017) 012069  doi :10.1088/1742-6596/842/1/012069

 

 

 

 

 

 

 

Where 𝜆 and 𝜇 are the Lamé constants, 𝜈1, 𝜈2 and 𝜈3 are the Toupin and Berstein constants which are 

equivalent to 𝜈1 = 𝑛, 𝜈2 = 𝑚 − 0.5𝑛 and 𝜈3 = 1 − 𝜈2 in terms of Mourghanan (𝑙, 𝑚, 𝑛) constants. 
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