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Abstract. In the present study, extended isogeometric analysis (XIGA) is used to analyse cracks 

in orthotropic media. NURBS and T-splines geometric technologies are used to define the 

geometry and the solution. Knot insertion and order elevation are used in NURBS models, while 

a new local refinement algorithm is applied to T-spline models. In XIGA, the basic idea of the 

extended finite element method (X-FEM) is used along with isogeometric analysis for modelling 

discontinuities by including enrichment functions. Special orthotropic crack tip enrichments are 

used to reproduce the singular fields near a crack tip, and fracture properties of the models are 

defined by the mixed mode stress intensity factors (SIFs), which are obtained by means of the 

interaction integral (M-integral). Results of the proposed method are compared with other 

available results. 

1.  Introduction 

Composite materials are not immune to manufacture defects such as voids, inclusions and cracks. The 

crack problems greatly influence in the macroscopic response of composites materials, and this lead to 

the need for better understanding and analyzing the behavior of these materials under applied loads 

especially in critical conditions. 

 Analytical studies based upon the laws of fracture mechanics of composites are available [1-5]. 

However, the complexity of the analytical solutions even for simple cases requires modelling the 

mechanical behaviour of this problem using effective numerical methods. Among them we distinguish, 

boundary element method (BEM) [6], finite element method (FEM) [7-14], which has wide range of 

applications [8, 11, 15-21], element free Galerkin method (EFGM) [22], extended finite element method 

(XFEM) [23] and other methods [24, 25]. A few years ago, isogeometric analysis was introduced by 

Hughes et al. [26] as an alternative to other methods. This method is based on the idea of using the same 

functions adopted in Computer Aided Design (CAD) not only to describe the domain geometry, but also 

to build the numerical approximation of the problem solution [27-35]. It has been developed and applied 

in many fields, such as: structural vibrations [33-40], with applications to structural health monitoring 

(SHM) [41-46], contact problems [47], piezoelectric [33, 34, 38] materials [48], blood flow [49], 

electromagnetics [50], shape optimization [51] and fracture mechanics [52]. However in fracture 

mechanics problems, IGA faces certain difficulties that are already exist in finite element method 

(FEM). This makes IGA a suitable candidate to be extended in the same way that FEM improved. 
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Recently, IGA was enhanced using the partition unity enrichment, but with local enrichment functions 

in order to capture the discontinuous without any explicit meshing, this method is known as extended 

isogeometric analysis (XIGA). For fracture mechanics, XIGA is characterized by the accuracy and the 

high convergence rate in such problems, as shown in [53]. Many investigations were performed using 

XIGA, such as in fatigue crack growth [54], thin shell analysis, Helmholtz problems, piezoelectric 

materials and composite materials [55-61]. 

 The most widely geometric function used in CAD is the NURBS, due to its simplicity and its 

efficiency in geometrical representations, especially all conical sections, which can be represented 

exactly, such as, circles, cylinders, spheres and ellipsoids. NURBS basis functions have very useful 

mathematical properties, like partition of unity, compact support, and high degree of continuity. Also, 

NURBS are characterized by the multitude of refinement methods (h-refinement, p-refinement, k-

refinement). In addition, there are many effective algorithms that can be programmed numerically to 

generate NURBS objects. As in CAD, NURBS was also used for IGA in most researches, because their 

mathematical properties are always compatible with analysis conditions regardless of the used geometric 

shape. Despite all the advantages mentioned there are some disadvantages observed during the analysis, 

which cannot be avoided even by using multiple patches, where NURBS generates a complicated mesh, 

which lead to produce superfluous control points. 

 Sederberg et al. [62] proposed T-splines as more generalized tools than NURBS in order to handle 

their disadvantages. T-splines are characterized by their robustness in the generation of adjacent patches, 

and also by the local refinement property of the mesh even for a single patch. In addition, T-splines 

provide several algorithms that can be used to refine geometries locally. Recently, T-splines were 

introduced as additional modules in some CAD software, like Maya and Rhino. As part of the IGA, T-

splines are considered as applicable analytical tools that have proven to be efficient in several studies. 

From the analysis point of view, T-splines allow to use a minimum number of degrees of freedom 

compared to the number that can be used in the NURBS, and this leads to simplify the computation. In 

some domains, T-splines are considered as a better tool for IGA, like in the fracture mechanics, contact 

mechanics and mechanics of bi-materials, generally in any domain where the property of local 

refinement is necessary and the geometry is complex. However T-spline bases are not always valid to 

be used in analysis for different geometric configurations, because the linear independent and the 

partition unity properties are not always ensured. Li et al. [63] introduced analysis-suitable T-spline, 

where for any choice of knot vectors the blending functions are linearly independent. Like NURBS 

bases, analysis-suitable T-spline bases have the properties of the analysis basis functions. Moreover, 

they provide an efficient algorithm, which allows making highly localized refinement [64]. 

In this paper, cracks in orthotropic media are analysed using XIGA, whereas NURBS and T-splines 

are used for modelling the crack and construct the geometry. Orthotropic crack tip enrichment functions 

[65-67] are implemented to accurately calculate the displacement and stress fields, and mixed mode 

stress intensity factors (SIFs) are numerically evaluated using the interaction integral (M-integral) [68] 

to determine fracture properties of the domain. An edge and central crack are investigated by considering 

the effect of fibre orientation. 

2.  Fracture mechanics for 2D orthotropic materials 

Consider a cracked elastic homogeneous orthotropic body Ω subjected to traction forces ft applied at Γt 

and displacement conditions applied at Γu in the absence of body forces, as shown in Figure 1. The 

partial differential equation of the stress functions of this problem can be obtained using equilibrium 

and compatibility conditions [69]: 

  
4 4 4 4 4

22 26 12 66 16 114 3 2 2 3 4
2 2 2 0c c c c c c

x x y x y x y y

        
     

       
 (1) 

where (x,y) is local Cartesian coordinates, φ is the stress function and cij is the components of the 

compliance matrix, which is computed in terms of Young moduli (E1, E2), Poisson ratios (ν12,ν13 and 

ν23) and shear modulus (μ12, μ13 and μ23) as follows: 
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The general characteristic equation of the partial differential equation is: 

  4 3 2

11 16 12 66 26 22
2 2 2 0c s c s c c s c s c       (3) 

 The four roots of this characteristic equation are complex and conjugated two-two (s1, 𝑠̅1 and s2, 𝑠̅2). 

These roots were used by [1] to derive the displacement and the stress fields in the vicinity of the crack 

tip for an infinite domain. The stress components for pure mode I are: 
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and for pure mode-II:  
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The displacements for pure mode-I are 
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Figure 1. An arbitrary orthotropic cracked body with boundary conditions. 

 

and for pure mode-II:  
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where Re represents the real part of a complex number, KI and KII are the stress intensity factors for 

modes I and mode II, respectively, and the constant values di and ei are computed as: 
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The relation between energy release rate G and stress intensity factors was expressed by Sih 

et al. [1] for homogeneous composites as follows: 
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3.  Non uniform rational B-splines (NURBS) 
NURBS entities are constructed by linear combination of NURBS basis functions and their control 

points. NURBS bases are defined by one knot vector in each parametric direction. Univariate NURBS 

basis functions Ri of order p are defined by: 
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where n is the number of basis functions, w is a set of positive weights, ξ is a parametric coordinate of 

the first direction and Ni are the B-spline basis functions corresponding to the knot vector 

Ξ={ξ1,ξ2,......,ξn+p+l}, they are given by: 
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For the two parametric directions ξ and η, bivariate NURBS basis functions are given by: 
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where Mj are B-spline basis functions of order q corresponding to the second knot vector 

H={η1,η2,......,ηm+q+1} of which m is the number of basis functions. 

4.  T-splines 

In order to construct a T-spline surface, the T-mesh, which is a mesh of rectangular elements defined by 

the lines corresponding to knot values, as shown in Figure 2, must be defined according to the basis 

function orders p and q to extract the local knot vectors Ξα and Hα, and compute the blending functions 

Rα for each anchor. Then, in a similar way as for NURBS, we can define the T-spline surface by: 
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where the blending functions given by: 
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and P is the control points, α is the anchor index, k is the number of the anchors in T-mesh and B is the 

bivariate local basis function, which is given by: 
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The refinement in T-splines is based on the subdivision of basis functions by insert knots to local 

knot vector. For one inserted knot z, there are two produced basis functions that are combined linearly 

to form the original basis function as: 
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 Figure 2. Shows a T-mesh with: (a) T-junction points (red points) and (b) local support of black point. 
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For more than one inserted knot, the application of these equations is repeated until all coefficients 

are derived. In refined T-spline space, the relation between the original basis functions B1 and the 

generated basis functions B2 can be expressed in linear system form using the refinement operator M 

 1 2
N MN  (22) 

where N1 and N2 are the column vectors of blending functions of the original and the refined T-spline 

spaces, respectively. 

5.  Extended isogeometric analysis (XIGA) 

In XIGA, the displacement approximation for cracks at a particular point ζ=(ξ,η), can be written in 

generalized form by extending the IGA approximation: 
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where Q is the T-spline basis function (R), Eq. 17 or NURBS basis function (R) Eq. 15. H is the 

Heaviside function used for modelling the crack face, it takes the value 1 above the crack and -1 below 

the crack, F are the crack-tip enrichment functions derived from the analytical solution of the 

displacement field around the crack tip, ui, aj and bk are the displacement vectors correspond to ns, ncf 

and nct control points, respectively. 

The crack-tip enrichment functions are obtained from the analytical solution of the displacement 

field in the vicinity of the crack-tip as [66]  
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where gk(θ) and θk are given by 
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6.  Numerical simulations 

In this section, a circular orthotropic plate with a central crack and a rectangular orthotropic plate with 

an edge crack are simulated in the plane stress state. The corresponding boundary conditions are shown 

in Figure 3. First, in the circular plate (E1=0.1 GPa, E2=1 GPa, μ12=0.5 GPa, v12=0.03) different inclined 

cracks are examined, where the orthotropic axes (1,2) coincide with the Cartesian axes (x,y). The 

problem is analysed using 793 control points and 688 elements (Figure 4). Variation of mode I and II 

SIF is presented in Figure 6. The obtained values in the case β=30° are compared with other values taken 

from the literature, as shown in Table 1. In the second part, several orientations of material elastic axes 

namely, γ=0°, 30°, 45°, 60° and 90° are investigated for the rectangular plate, which is composed of 

graphite-epoxy material (E1=114.8 GPa, E2=11.7 GPa, μ12=9.66 GPa, v12=0.21). The T-spline mesh 

(1372 DOF) is constructed using 566 control points and 431 elements (Figure 5), and the NURBS mesh 

(3248 DOF) is constructed using 1624 control points and 1375 elements (Figure 5). The obtained 

normalized stress intensity factors ( ( ))K = K / σ πa  are compared with those of the XFEM, as 

depicted in Figure 7. 
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(a)  

(b)  

Figure 3. Geometries and boundary conditions for the homogeneous orthotropic examples: (a) a disk 

with a center crack and (b) a rectangular plate with an edge crack. 

 

(a)  (b)  
 

(c) 

Figure 4. The meshes used for the circular plate example: (a) T-spline control net (793 points), (b) T-

spline mesh (688 elements) et (c) NURBS control net (4489 points). 

 

 
(a) 

 
(b) (c) (d) 

Figure 5. The used meshes of rectangular plate: (a) 1624 control points and (b) 1375 elements, for 

NURBS representation, (c) 566 control points and (d) 431 elements, for T-spline representation. 

 

In Figure 6 and Table 1 the obtained SIFs are in good agreement with the other methods. T-splines 

provide a minimal number of nodes due to their ability in describing exactly such geometries. Also, the 

results of the edge crack problem (Figure 7) in both modes agree well for minimal number of degrees 
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of freedom compared to XFEM and NURBS based XIGA. The mode I SIF changes their trend in 45° 

and the mode II SIF changes their trend in 30°, so in orthotropic materials the stress intensity factors are 

not only depend on the crack angle, but they also depend on the direction of elasticity axes. For more 

details about the results that obtained by other numerical methods for this problem, the reader may refer 

to [23,69]. 
 

Table 1. Comparison of mixed mode stress intensity factors for a central inclined crack (β=30°) in 

orthotropic disk. 
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Figure 6. Variation of mode I and II SIFs with respect to different crack angles using analysis-suitable 

T-splines and NURBS for the circular plate. 
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Figure 7. Variations of normalized mode I and II SIFs with respect to different angles of orthotropic 

axes using analysis-suitable T-splines, NURBS and XFEM for the rectangular plate. 
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7.  Conclusion 

Static fracture behaviour for a crack in orthotropic materials is analysed numerically in this study using 

the Extended Isogeometric Analysis (XIGA). NURBS and T-splines bases are used to define the exact 

geometry and approximate the solution throughout the analysis. Orthotropic crack-tip enrichment 

functions, which can be applied to all types of orthotropic materials, are implemented. SIFs for both 

mode I and II are evaluated using the M-integral to determine fracture properties of the domain. The 

quality of the obtained results regarding their good agreement with the results of literature demonstrates 

the accuracy of the present approach and the robustness of the developed code. The inclination angle of 

the orthotropic axes generates and affects the evolution of mixed mode SIF even if the crack is only 

subjected to mode I loading, therefore the mode II must also be evaluated. 
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