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Abstract. Crack identification in multi-span beams is performed to determine whether the 

structure is healthy or not. Among all crack identification methods, these based on measured 

natural frequency changes present the advantage of simplicity and easy to use in practical 

engineering. To accurately identify the cracks characteristics for multi-span beam structure, a 

mathematical model is established, which can predict frequency changes for any boundary 

conditions, the intermediate supports being hinges. This relation is based on the modal strain 

energy concept. Since frequency changes are relative small, to obtain natural frequencies with 

high resolution, a signal processing algorithm based on superposing of numerous spectra is 

also proposed, which overcomes the disadvantage of Fast Fourier Transform in the aspect of 

frequency resolution. Based on above-mentioned mathematical model and signal processing 

algorithm, the method of identifying cracks on multi-span beams is presented. To verify the 

accuracy of this identification method, experimental examples are conducted on a two-span 

structure. The results demonstrate that the method proposed in this paper can accurately 

identify the crack position and depth. 

1.  Introduction 

Even if beams with multiple supports are frequently used in practice, the research about such 

structures in the damaged state is not broadly present in the literature. In this research, uniformly 

spaced spans are commonly considered. An example is the study of a beam with two identical spans 

traversed by a train moving at a constant velocity, which had the aim to highlight the resonance 

characteristics [1]. The Euler-Bernoulli beam theory was used to model the two beam segments, and 

constraints and compatibility conditions were imposed at the beam center. The effect of the random 

deviation of the span lengths from the ideal design was studied in [2], using the perturbation method. 

Transverse vibrations of a slender beam with infinite length mounted on discrete elastic supports are 

studied in [3]. To describe the dynamic behavior of multi-span beams, the supports are replaced by 

forces acting on the support locations. The deflection is described by a single function, the reactions at 

the support locations being included in the eigenvalue solution [4].  

In the damage detection methods, the multi-span structures with transverse cracks are treated as an 

assembly of intact sub-segments. The cracks are replaced with massless rotational spring, while 

instead of the supports, constraints and compatibility conditions are imposed [5]. The models become 



2

1234567890

12th International Conference on Damage Assessment of Structures   IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 842 (2017) 012033  doi :10.1088/1742-6596/842/1/012033

 

 

 

 

 

 

complicated, and, by replacing the intermediate supports or the crack, a new set of equations has to be 

solved. Several theoretical studies and experiments aiming to study and analyze the changes of the 

natural frequencies and mode shapes occurring due to damage in general terms [6-13] and due to a 

crack in particular [14-17], were presented in the literature.  

Previous publications, [18-20], present a mathematical relation that predicts the frequency changes 

occurred in single span beams due to cracks with known depth and position. The input data is limited 

to the curvature achieved by the intact beam in the location where damage is expected, and the 

absolute damage severity derived from the deflections of the intact and damaged beam. Based on this 

relation a database was build for a multitude of damage scenarios and differently supported beams, 

therefore damage assessment becomes an inverse problem.  

This paper presents the exact solution for the frequencies of beams with two unequal spans, for 

both healthy and damaged state. Any support and crack position can be taken into consideration; the 

crack depth is limited to around 50% by the linearity condition. The results are implemented in a 

database and used to demonstrate the robustness of the proposed damage assessment method. 

2.  Modal parameters for the intact two-span beam 

The study is performed on a long slender beam with two spans, as shown in figure 1, having the length 

L, the width b and the thickness h, and consequently the second moment of area of the cross section I 

and the cross section area A. At the right end the support is a hinge and the left end is clamped; 

supplementary, a hinge at distance 
1L  is intercalated. The relevant material characteristics are: the 

Young Modulus E, the volumetric mass density  , and the Poisson ratio  . 

If the beam is subjected to a damage, this is an open transversal crack which has the depth a and 

the width l . Its position is indicated as c .  

 

 

Figure 1. Two-span beam geometry with damage in detailed view. 
 

The bending vibrations of this beam are described by the following equation:  

 
4 2

4 2
0

z A z

x EI t

 
  

 
 (1) 

where z  is the vertical beam displacement at distance x  measured from the left end. The solution z  

of equation (1) can be written as a standing wave, ( , ) ( ) sin( )z x t W x t    , thus spatial and 

temporal components are separated. For the spatial component the well-known solution is  

 ( ) sin cos sinh coshW x A x B x C x D x        (2) 
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where A, B, C and D and 
2

4 A

EI

 
   are coefficients defined by the particular boundary conditions. 

 

Figure 2. Boundary conditions for the analyzed two-span beam. 
 

In the vibration analysis, each segment between two supports is considered as a separate beam. The 

left segment has associated the space interval  1 10x L , and the origin of the reference system is 

the fixed beam end (point 1 in figure 2). The right segment has associated the space interval 

 2 20x L , and the origin of the reference system is the hinge placed at the right beam end (point 3 

in figure 2). The two solutions of equation (1) get, for the two segments, the form 

 
1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

( ) sin( ) cos( ) sinh( ) cosh( )

( ) sin( ) cos( ) sinh( ) cosh( )

W x A x B x C x D x

W x A x B x C x D x

   

   

   


   
  (3) 

Applying the eight constraints and continuity conditions to the solutions in equation (3), it results a 

system with eight algebraic equations. After removing the eight coefficients 1 2...A D  from the algebraic 

system, an equation with the variable / L   is attained, that is    

 

 
2

1 1 1 1 1 1

1 1 1 1 1 1 1 1 2 2

2 2 2

2 ( ) ( ) ( )

( ) ( ) ( ) ( ) cos( ) cosh( )
0

sin( ) sin( ) sinh( )

L L L

L L L L L L

L L L

  

     

  

     
 

      
      
   

  (4) 

where 
1 1 1 1( ) sin( ) sinh( )L L L     , 

1 1 1 1( ) sin( ) sinh( )L L L     , 
1 1 1 1( ) cos( ) cosh( )L L L      

and 
1 1 1 1( ) cos( ) cosh( )L L L     . 

By solving equation (4) for the central hinge position removed iteratively along the beam, the 

evolution of the dimensionless wave number   in form of variation curves is obtained (see figure 3). 

From this figure one can easily observe that for 1 0L   the wave numbers achieve very close values 

to that of a beam clamped at the left end and hinged at the right end (marked with a red square). If the 

intermediate hinge is close to the hinged end, i.e. 1 1L  , the wave number values are very similar with 

that of a beam with both ends clamped (marked with a blue square). 

The two-span beam’s frequencies can be derived using the well-known frequency relation  
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Figure 3. Dimensionless wave number for the first six vibration modes central hinge location. 

 

By replacing the coefficients A1, B1, C1, D1, A2, B2, C2, D2 in equations (4), results the mode shape 

function for the considered continuous beam. For the left segment it is: 

  
 

 
       1 1

1 1 1 1 1 1 1 1

1 1

, , sin sinh cos cosh
i

i i i i i i

i

L
W x L D x x x x

L


    




  
             

  (6) 

while for the right segment it is: 

      21 1 1 1 1 1 1 1
2 2 1 1 2 2

1 1 2 2

sin( )( ) ( ) ( ) ( )
, , sinh sin

2 ( ) sin( ) sinh( )

i
i i i i

i

LL L L L
W x L D x x

L L L

   
  

  


    
   

   
 (7) 

Note that, to obtain normalized mode shapes, D1 must be determined separately for each location of 

L1 and vibration mode.   

The analytically achieved results are now compared with that from FEM simulations. A beam with 

following geometrical and physical-mechanical parameters is involved in the analysis: 2mL  , 

20mmb  , 5mmh  , 37850kg/m  , 11 22 10 N/mE    and 0.3  . In the first case the central 

hinge is placed at the normalized distance 1 / 0.33L L   and in the second case it is located at distance 

1 / 0.45L L  . The FEM analysis, performed by means of the ANSYS 14 software, made use of a 

hexahedral mesh element with imposed dimensions 2 mm.  

Table 1 indicates the wave numbers and frequencies derived analytically, as well as the simulation 

results. The differences between synonym frequencies is less than 5%, except two modes of the beam 

with central hinge at 1 / 0.33L L  . These differences occur because certain slenderness is necessary to 

permit applying the Euler-Bernoulli theory. Thus, if one of the beam segments is short, bigger errors 

are present, imposing a more complex model. In addition, the FEM model does not exactly reflect the 

conditions induced by the hinges in the analytical model.   
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Table 1. Wave numbers and frequencies for two position of the intermediate hinge. 

Vibration 

mode i 

Hinge at L1/L = 0.33 Hinge at L1/L = 0.45 

Analytic FEM Analytic FEM 

Wave 

number 

Frequency 

[Hz] 

Frequency 

[Hz] 

Wave 

number 

Frequency 

[Hz] 

Frequency 

[Hz] 

1 5.407 8.475 9.358 6.348 11.681 12.538 

2 9.806 27.873 27.334 9.569 26.542 27.789 

3 12.908 48.296 53.050 12.264 43.593 43.824 

4 15.008 65.292 65.813 16.262 76.662 81.506 

5 19.219 107.073 106.538 18.196 95.978 99.190 

6 22.358 144.903 150.784 22.773 150.341 151.798 

 

For the hinge located at L1/L = 0.33, the first six bending mode shapes are depicted in figure 4, 

where those corresponding to the analytic approach are to the left and those resulted from the FEM 

analysis to the right. One can observe in this figure that curves fit well.  

 
        Mode 1 

      
        Mode 2 

      
       Mode 3 

      
        Mode 4 

      
        Mode 5 

      
        Mode 6 

      

Figure 4. Modes shapes derived analytically and by means of FEM 
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3.  Natural frequencies of the damaged beam 

The crack considered in this study is transversal and has the depth a, as shown in figure 1. It is located 

at distance c from the fixed end. As shown in our previous papers, the energy stored in a slice in the 

undamaged state can indicate the natural frequency drop if a crack occurs in that slice [19]. The 

mathematical relation permitting to determine the natural frequencies for the damaged beam, adapted 

for the particular case of the two-span beam is 

     
2

1 1, , 1 ( ) , ,D i i i if c L a f a W c L 
        (8) 

where
if is the natural frequency for the undamaged beam for the i-th vibration mode and ( ) 1a   is 

the damage severity characterizing the effect of a crack with relative depth [20], which is null for the 

undamaged beam. The normalized modal curvature at location c, denoted 1( , , )i iW c L   in equation (8), 

is found from equations (9) or (10), depending on which segment the crack is located.  

  
 

 
       1 1

1 1 1 1 2 1 1 1 1

1 1

, , sin sinh cos cosh
i

i i i i i i

i

L
W x L k k x x x x

L


    




  
               

  (9) 

      21 1 1 1 1 1 1 1
2 2 1 1 2 2

1 1 2 2

sin( )( ) ( ) ( ) ( )
, , sinh sin

2 ( ) sin( ) sinh( )

i
i i i i

i

LL L L L
W x L k x x

L L L

   
  

  


    
    

   
 (10) 

The functions in equations (9) and (10) are proportional with the modal curvatures of the two 

segments. Normalization is achieved by involving the proper coefficients k1 and k2. Based on equation 

(8), the frequencies of the damaged beam for any crack location can be calculated.  Figure 5 shows the 

frequency evolution if the crack is replaced along the beam, for the intermediate hinge located at 

1 / 0.33L L  . The damage severity is ( ) 0.01a  ; this severity is achieved for the open crack with 

depth 1.25mma   and width 2mml  .  

 

  

  

  

Figure 5. The frequency shift curves for the first six vibration modes analytically derived (red line) 

and samples attained from the FEM analysis. 
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Modal analysis using ANSYS was made for three crack positions 
1 / 0.25c L  , 

2 / 0.45c L   and 

3 / 0.75c L  . The results are indicated with black squares in figure 5. Having a look onto this figure, it 

is easy to remark the fit between analytically and FEM-based attained results, meaning that equation 

(8) can be used to define damage patterns which can be further used in the damage detection process. 

For beams with multiple supports the frequency shifts are slight, making the improvement of 

frequency readability an important issue in experimental modal analysis [21-22].    

4.  The damage detection algorithm 

The proposed assessment algorithm is based on the particularity that any crack provides a particular 

behavior change to that beam. As consequence of a crack, frequencies of different bending modes shift 

differently, in respect to the energy stored in the damaged slice, as shown in previous section. For the 

i-th bending mode of a two-span beam, the relative frequency shift is derived as: 

    
2

1 1, , ( ) , ,i D i
i i i

i

f f
f c L a a W c L

f
 

        (11) 

For every damage locations c and relative depths a  result the relative frequency shifts 1... nf f   

which constitute the damage pattern. In optimal conditions two frequency shifts are sufficient to 

identify location and severity [23], but an increased number of analyzed frequencies, we recommend 

6n  , permit precise assessment because redundancy reduce evaluation or measurement errors.  

Normalization of relative frequency shift values for each location c by the highest value of the 

sequence cancel the influence of damage depth. This happens because both numerator and 

denominator contain the severity ( )a . In that way the sequence had become independent of the 

damage severity and its parameters take values between 0 and 1. Such a sequence is named Damage 

Location Indicator (DLI) and the individual parameters Damage Location Coefficients (DLC). For the 

crack positioned at distance jc , the DLCs are  

  
  
   

 
   

2 2

1

1 2 2

( )
( ) , ... , ( )

max max

j n j

j n j

i j i j

W c W c
c c

W c W c

 
   

 
  (12) 

These DLCs can be derived just using information about the beam in its intact state. For 

asymmetric structures the DLCs uniquely indicate the damage location, while for symmetric structures 

two mirrored locations provide the same values of DLCs. An infinite number of damage location 

indicators, denoted Φ( )jc , can be derived in respect to the chosen crack positions j. From our 

expertise we recommend limiting to 100p   locations.  

For the real beam measured relative frequency shifts 1 1...m mf f   can be also obtained from equation 

(11), if the frequencies in intact state m

if  and in the presence of damage m

D if   are known. Normalizing 

the measured relative frequency shifts after the same rule as that used for the DLCs, the normalized 

measured frequency shifts NFR are obtained. These are expressed as  

 
   

1
1 , ... ,

max max

mm

n
nm m

i i

ff

f f


   

 
 (13) 

and are also severity-independent. The entire sequence Ψ is nominated as the Damage Signature (DS); 

it has the same meaning as the DLIs but is derived from experimental data.  

Example of two DLIs, for the beam with a hinge at 1 / 0.33L L   and damages at position 

1 / 0.24c L  , 2 / 0.46c L   and 3 / 0.76c L   are presented in figure 6. 
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Figure 6. Examples of damage location indicators for the crack position 
1 / 0.24c L   (left diagram),  

2 / 0.46c L   (right diagram), and 
3 / 0.76c L   (right diagram). 

 

If the damage signature Ψ  is compared with several damage location indicators Φ( )jc  , it will be 

found one that best fit. The similitude test between the Damage Signature Ψ  and all Damage Location 

Indicators Φ( )jc , in fact vectors with n elements, indicate the crack position by designating the index  

j. Herein the Minkowski distance of second order is uded as a Damage Index, that is  

 

1

22

1

( )
n

j i j i

i

DI c


 
   
 
   (14) 

is used to find the most similar vectors. The value j for which the objective function DIj achieves the 

lowest value is searched; it indicates the crack location jc . 

Briefly, the proposed damage assessment algorithm is detailed in the following steps: If the beam is 

already damaged in the initial state, the assessment algorithm shows the damage evolution from this 

stage on. 

S1 - frequency evaluation for the intact state is performed for the first n  weak-axis bending vibration 

modes. It result a vector 1:{ ... }m m

nU f f  

S2 - periodical measurements are performed, for each attempt being obtained a sequence 

1:{ ... }m m

D D nD f f    

S3 - frequencies for initial and actual state are compared in order to find the frequency shifts. The 

values obtained in step S2 are subtracted from those obtained in step S1, resulting 1:{ ... }m m

nS f f  . For 

insignificant differences the structure is considered intact, else occurrence of damage is presumed.  

S4 - if the damage is expected, the relative frequency shifts are determined as 1:{ ... }m m

nR f f   

S5 - the relative frequency shifts are normalized, resulting the Damage Signature 1:{ ... }n   

S6 - the normalized squared modal curvatures for the healthy beam are analytically determined for p 

equidistant locations, resulting p vectors  2 2

1,2 1 1 1,2 1: ( , , ) ... ( , , )j j n jC W c L a W c L a 
         

S7 - the DLIs are derived by dividing the DLCs of each jC  to the highest value of the sequence, 

resulting  1( ) : Φ ( )...Φ ( )j j n jc c cΦ  

S8 - the analytically derived Φ( )jc  vectors are compared to the Ψ  vector determined by 

measurements by means of a similitude estimator (herein the Minkowski Distance) in order to identify 

the index j ensuring the lowest value, and subsequent the crack position jc .  

S9 - the damage severity can be determined from severity curves traced for different cross-sections 

after a methodology presented in [24].  
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5.  Numerical experiment 

The algorithm is tested for the three damages indicated at the end of section 3, with absolute 

positions 
1 500 mmc  , 

2 900 mmc   and 
3 1500 mmc  . The beam described in figure 1 is analyzed. 

It has the geometry and the physical-mechanical parameters provided in section 2, and the 

intermediate hinge position is at the position
1 660mmL  , resulting

1 / 0.33L L  .  

The measurements are replaced by FEM simulations, the evaluated frequencies for the intact as 

well as for the three damage cases being presented in tables 2 to 4. We worked through steps the first 5 

steps of the algorithm and found the RFS and the damage signatures   for the three analyzed cases. 

These are compared in tables 2 to 4 with the DLCs of the closest damage location indicators. Note 

that, in steps S6 to S8, just 51 crack locations are considered. The reduced number of DLIs assumed in 

the database increases the degree of difficulty for the identification process. If crack identification is 

performed successful, it is demonstrated that the damage signature attained from six vibration modes 

doubtless indicate the crack position.  

 

Table 2. Frequencies and damage patterns for the crack positioned at c1 = 500 mm. 

Vibration 

mode i 

Intact Damage at c1 = 500 mm Closest found DLCs 

Frequency 

[Hz] 

Frequency 

[Hz] 

RSF DS DLC 480 DLC 520 

1 9.358 9.316 0.4400 1 0.7987 1 

2 27.334 27.245 0.3224 0.7327 0.6740 0.6947 

3 53.050 52.991 0.1103 0.2508 0.4067 0.1623 

4 65.813 65.800 0.0193 0.0439 0.0065 0.0562 

5 106.538 106.326 0.1984 0.4509 0.2643 0.4919 

6 150.784 150.160 0.4136 0.9400 1 0.8332 

 

 

Table 3. Frequencies and damage patterns for the crack positioned at c2 = 900 mm. 

Vibration 

mode i 

Intact Damage at c2 = 900 mm Closest found DLCs 

Frequency 

[Hz] 

Frequency 

[Hz] 

RSF DLC DLC 880 DLC 920 

1 9.358 9.357 0.0080 0.0122 0.0309 0.0075 

2 27.334 27.186 0.5402 0.8182 0.4323 0.9147 

3 53.050 53.014 0.0661 0.1002 0.1134 0.0968 

4 65.813 65.458 0.5379 0.8147 0.4504 0.9058 

5 106.538 105.834 0.6601 1 1 1 

6 150.784 150.758 0.0168 0.0255 0.0001 0.0319 

 

 

Table 4. Frequencies and damage patterns for the crack positioned at c3 = 1500 mm. 

Vibration 

mode i 

Intact Damage at c3 = 1500 mm Closest found DLCs 

Frequency 

[Hz] 

Frequency 

[Hz] 

RSF DLC DLC 1480 DLC 1520 

1 9.358 9.266 0.9838 1 1 0.9681 

2 27.334 27.236 0.3582 0.3721 0.3184 0.5139 

3 53.050 53.048 0.0034 0.0033 0.0044 0.0001 

4 65.813 65.616 0.2987 0.2962 0.3459 0.1447 

5 106.538 105.544 0.9327 0.9521 0.9247 1 

6 150.784 150.736 0.0312 0.0335 0.0215 0.0669 
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Similitude tests between the damage signatures and the damage location indicators are performed 

in step eight. The three vectors   are individually compared with 51p   vectors Φ( )jc  involving 

the Minkowski distance of second order. The results are graphically represented in figure 7, in the 

form of evolution curves. This figure gives direct information about the damage location. The 

similitude curve traced for the damage position 
1 500 mmc   attains the lowest values around the 

crack position, framing it. A clear minima is achieved for the crack positioned at 2 900 mmc  , while 

the curve for the crack located at 
3 1500 mmc   present two possible solutions. A supplementary test 

can be performed by comparing the individual elements of the possible DLIs and the DS. Because the 

DS can fit just one DLI, this will indicate the damage position.    
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Figure 7. Examples of damage location identification using the Minkowski distance. 

 

Alternatively, the damage position can be found by identifying the index j for which the damage 

index in equation (14) get the lowest value(s). This process can be automated, no human intervention 

being necessary. If more DI values qualify as possible solutions, in order to eliminate 

misinterpretation, again the individual elements of the potential DLIs and the DS can be compared. 

In both analysis strategies, the increase of DLIs populating the database leads to an improved 

precision in locating cracks. This is reflected in damage index values close to null, eliminating doubts.  

6.  Conclusion 

The problem of crack assessment in multi-span beams was considered via a simple and robust 

vibration-based method. The proposed method is based on the effect that the energy loss in a slice due 

to damage has upon the magnitude of frequency change. For the intact beam, the energy distribution in 

various vibration modes was contrived, and a predictive behavioral model developed. This model is 

used to define DLIs, which are integrated in a database including any possible damage scenarios for 

the analyzed beam. Adaption of the model, allowing the use of other end supports, can by simply 

made by changing the boundary conditions.  

The method proved effective in detecting cracks and high accuracy is achieved in estimating the 

crack position. However, the early observation and precise localization depend on the possibility to 

quantify slight frequency changes and on the density of DLIs involved in the analysis. The similarity 

estimation strategy plays also a crucial role.  
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