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Abstract. A new static identification approach based on the minimum constitutive relation error 

(CRE) principle for beam structures is introduced. The exact stiffness and the exact bending 

moment are shown to make the CRE minimal for given displacements to beam damages. A two-

step substitution algorithm—a force-method step for the bending moment and a constitutive-

relation step for the stiffness—is developed and its convergence is rigorously derived. 

Identifiability is further discussed and the stiffness in the undeformed region is found to be 

unidentifiable. An extra set of static measurements is complemented to remedy the drawback. 

Convergence and robustness are finally verified through numerical examples. 

1.  Introduction 

This work focuses on the damage identification method which is performed based on static test data 

through a minimum constitutive relation error (CRE) procedure [1]. For structures such as beams, static 

tests are easily performed and accurate enough to give useful results as dynamic tests [2-10].  According 

to the recent variational theory of Geymonat and Pagano [11], constitutive parameters and stresses can 

be identified through minimization of the CRE as long as full-field displacement measurements are 

readily acquired under given loads and this idea has been proposed very recently by Florentin and 

Lubineau [12-16] for parameter identification in plane elasticity problems. This method is also quite 

tailored for beam structures, to which this paper is just devoted, for the reason that global displacement 

measurements are easily available and the standard force method [17] based on the minimum 

complementary energy principle is easily conducted and it often requires substantially less degrees of 

freedom than conventional displacement-based finite element models. Practical problems such as 

algorithm implementation, convergence, identifiability and effect of measurement noises will also be 

discussed in detail. 

The remainder of the paper is organized as follows. The minimum CRE principle for inverse 

identification of a Bernoulli-Euler beam model is simply introduced and the convergence and 

identifiability of the proposed approach are also discussed in Section 2. Numerical tests are performed 

in Section 3 and final conclusions are drawn in Section 4. 
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2.  Formulations of the problem 

2.1. Reference problem 

Let us consider a one-dimensional Bernoulli-Euler beam defined in interval [ , ]s eX x x . The flexural 

stiffness of the beam is assumed to be ( ) ( )k x EI x . Loading conditions are distributed loads ( )q x  and 

concentrated loads ,ex exF M  along with boundary displacements ,p pw   on the prescribed displacement 

boundary. Then the beam model can be described as a combination of the following three parts: 

 Kinematic constraints 

 w ; (1) 

 Equilibrium equations 

Find bending moment M  with 

 { : , ( ),  and  are in equilibrium with  and }ex exM V M M q x V M F M    , (2) 

where V is a shear force and exx  is the position where concentrated loads ,ex exF M
 
are enforced; 

 Constitutive relation 

 M kw  (3) 

with 2 0 0 0 0{ ( ) : 0 ,  such that ( ) }k k L X c C c k x C         representing a positive stiffness field. 

Generally, ,  ,  that will be used frequently in what follows are called the spaces of 

(kinematically) admissible displacement field, (statically) admissible bending moment field and 

(constitutively) admissible elastic stiffness field, respectively. 

In this paper, identification of damage in beams is performed with the help of static measurements 

which contain the information of static loads and full-field displacement measurements. The objective 

is to identify the damaged stiffness ( )k x  , given the displacement measurements w  and the 

respective static loading conditions  ; that is to say, the inverse identification problem reads: find 

( , )k M    with given w  which is a reverse of the forward problem: find ( , )w M    with 

known k . Evidently, by solving the inverse problem, one can not only identify the damage, but also 

reconstruct the stiffness and bending moment distribution. 

2.2. The minimum-CRE principle and identification algorithm 

Consider an admissible solution trio ( , , )w M k  which satisfies 

 , ,w M k   . (4) 

To measure the distance of the admissible solution trio to the exact solution trio in energy product, 

an error in constitutive relation is introduced 

 
21 ( )

( , , )
2

CRE
X

M kw
e w M k dx

k


   (5) 

which is termed the constitutive relation error (CRE) [1] (or constitutive equation gap (CEG) [12]).  

For the present inverse problem, the displacement field w , the spaces  and   for search of 

the stiffness k  and the bending moment M , respectively, are already known. Minimization of the CRE 

can then be interpreted as the following procedure, 

 
,

( , ) arg min ( , );  ( , ) : ( , , )CRE
M k

M k F M k F M k e w M k
 

  , (6) 

which is known as the minimum CRE principle [11] for inverse identification. For practical 

implementation, a two-step substitution algorithm is developed. 
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Firstly, minimization of the CRE function over M  yields a minimum complementary energy 

problem that should be solved by the force method. Therefore, the procedure is simply designated as 

 2

_ ( , , )

1
    : arg min{ ( | ( ) | )}

2
p p p ppXM

M Force Method k

M
dx M w M

k




 

  
 (7) 

and this step is called the force-method step. 

Secondly, minimization of the CRE over k  gives  

 
2

2

2
( ) 0.

X

M
w kdx

k


 
  

 
  (8) 

Practically, it is sufficient to assume that the stiffness k  is piecewise constant, that is to say,  

 
1 , 1 ,  and  are non-overlapping,

( ) { , }

N

i i i j

i i

X X i j N X X

k x k x X

    

 
 (9) 

where N  is the number of non-overlapping pieces, or elements. Under this circumstance, equation (8) 

is reduced into 

 
2

2

2
( ) 0, 1,2,...,

i
i

X
i

M
w k dx i N

k


  
   

  
  (10) 

and then, one has 

 

2

2
, 1,2,...,

( )

i

i

X

i

X

M dx
k i N

w dx
 






. (11) 

It turns out that equation (11) looks like the direct use of the constitutive relation in equation (3). Thus, 

this step is named the constitutive-relation step. After integration of both equations (7) and (11), a two-

step iterative algorithm for inverse identification of the damaged stiffness could be established. 

2.3. Identifiability 

In fact, convergence of the algorithm requires the uniqueness of the minimizer and therefore, the 

algorithm may not work well in the case of ( ( ) 0, ) 0w x x X     . Let us assume that the measured 

displacements do not deform on a certain region, e.g., 0w   on lX  with {1,2,..., }l N  being a 

number. Thus, the CRE is slightly modified into 

 
2

mod

\

1 ( )
( , , )

2 l
CRE

X X

M kw
e w M k dx

k


   (12) 

that is to say, to identify the stiffness of a beam at a certain region, practical loads must render this region 

deformable, i.e. 0w  . If the stiffness of an undeformed region must be identified, another static load 

should be enforced on the beam so that this region is deformed and another set of static measurements 

is obtained. To be distinct, denote the extra measured displacement field by 1 1w   and the 

corresponding bending moment is sought in 1 1M  . Then, the inverse identification procedure can 

proceed in an analogous way to equation (13), 

  
1 1

1 1 1 1
, ,

( , , ) arg min ( , , ) ( , , )
h

CRE CRE
M M k

M M k re w M k re w M k
  

   (13) 
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with 1, 0r r  and 1 1r r  . The parameters r  and 1r  are determined by the reliability of practical 

measurements. In a word, the strategy to introduce additional sets of static measurements can help 

improve and enhance the identifiability of the algorithm, and provide remedy for possible 

unidentifiability of the proposed approach accordingly. In fact, the strategy is also effective for other 

inverse identification problems [17]. 

3.  Numerical tests 

To show the effectiveness of the proposed damage identification approach, two beams are studied. They 

are a simply supported beam and a propped cantilever beam. A Gaussian noise is added to the simulated 

response as 

 noise( ) ( )x randn a u x    (14) 

where randn  is the standard Gaussian random distribution with zero mean and unit standard deviation, 

a  is the applied noise level and ( )u x  is the simulated displacement at a certain point x . For application 

of the two-step substitution algorithm, the convergence tolerance is practically set to TOL 0.001 . 

 

Figure 1. Geometry and damage location of simply supported beam 

3.1. Example 1—a simply supported beam 

Damage identification of a simply supported beam is studied herein. There are eleven uniformly 

distributed measurement points which divide the beam into ten elements as enumerated in Figure 1. 

Parameters of the intact beam are: length 6L  m, Young’s modulus 101 10E   Pa and the rectangle 

section is of size 0.1m 0.1m ; that is to say, inertial moment of the beam is 4 40.08333 10 mI    and 

the bending stiffness of the intact beam is 0 4 28.33 10 N mk EI     over the whole beam.  

Two damage cases D1 and D2, having single damage region and multiple damage regions, 

respectively, are considered: 

 Case D1: stiffness reduced to 50% in element 3; 

 Case D2: stiffness reduced to 50%, 30% and 70% in elements 4, 6 and 8, respectively. 

Moreover, two different load cases are enforced separately as 

 Case L1: concentrated force 1F  kN at the middle point (point 6); and 

 Case L2: uniformly distributed load 0.5q  kN/m over the whole beam, 

such that the effect of load types on damage identification is examined. The combinatory of the two 

damage cases D1 and D2 with the two load cases L1 and L2 provides four damage identification 

scenarios (I1:D1+L1; I2:D1+L2; I3:D2+L1; I4:D2+L2). The displacements under the four scenarios (I1, 

I2, I3 and I4) are measured numerically by finite element computations, since for an elastic Bernoulli-

Euler beam with piecewise constant stiffness, finite element analysis with cubic Hermit shape functions 

can give rise to the exact nodal displacements if every element is of constant stiffness [18].  

For this statically determinate beam, the exact bending moment is directly known, a single step in 

equation (11) would complete the identification of the damaged stiffness. For the sake of convenience, 

the damage index DAI  is introduced to represent the scaled damage in the beam, i.e.  

 
0DAI /damage

i i ik k  (15) 
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for the i th element where damage

ik  is the damaged stiffness in element i and 0

ik  is the undamaged initial 

stiffness. Then, damage indices for the four scenarios are computed and listed in Table 1. Obviously, 

the damage is perfectly identified and reproduced for all the four scenarios. Nevertheless, it is seen that 

the concentrated load (in scenarios I1 and I3) can lead to slightly better damage identification results 

than the uniformly distributed load (in scenarios I2 and I4); this is reasonable since Hermit interpolation 

of the exact pointwise displacements can lead to the exact displacement field for a concentrated load, 

but only gives an approximate displacement field w for a uniformly distributed load. 

Table 1. Identified damage indices of simply supported beam 

Element number 1 2 3 4 5 6 7 8 9 10 

Damage 

identification 

scenarios 

I1 1.0000 1.0000 0.5000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

I2 1.0001 1.0000 0.5000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0001 

I3 1.0000 1.0000 1.0000 0.5000 1.0000 0.3000 1.0000 0.7000 1.0000 1.0000 

I4 1.0001 1.0000 1.0000 0.5000 1.0000 0.3000 1.0000 0.7000 1.0000 1.0001 

In addition, to investigate the robustness of the proposed approach, measurement noises of levels 1%, 

2%, 5% and 10% are taken into consideration for scenarios I1 and I4. The identified results are displayed 

in Figure 2. It is seen that when measurement noise is not greater than 5%, the damage can be well 

identified; while if noises rise to 10%, the proposed approach may not work well for a statically 

determinate beam structure. To examine how identified results are affected by the number of 

measurement points, the damage case D1—50% stiffness reduction over interval 1.2m 1.8mx   of 

the beam— under concentrated moments M0= -1kNm at the left end and ML=1kNm at the right end is 

further considered for 11 and 21 uniformly distributed measurement points and under measurement 

noises of levels 0%, 2% and 5%. As shown in Figure 3, the identified results are almost of the same 

quality under either 10 or 20 measurement elements. Thus, it is deduced that the quality of the identified 

results depends mainly on the accuracy of measurement rather than the number of measurement points. 

 

 

 

Figure 2. Damage identification with measurement noises in simply supported beam for: (a) scenario 

I1 and (b) scenario I2 

(b) 

(a) 
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Figure 3. Damage identification with measurement noises in simply supported beam under (a) 10 

measurement elements and (b) 20 measurement elements 

 

 

Figure 4. Geometry and loads for a propped cantilever beam 

 

3.2. Example 2—a propped cantilever beam 

A propped cantilever beam of continuously varying stiffness 
2

0( ) (1 / )k x k x L   with 
2

0 1kN mk    

(see Figure 4) is studied. The geometric parameter is 1mL   and the load is a concentrated moment 

0 1kN mM    at the right end. For practical measurements, points are uniformly distributed and 

pointwise displacements are obtained through refined finite element computation. Three sets of static 

measurements for 11, 51 and 101 measurement points are studied to see the effect of the number of 

measurement points on damage identification. To measure the error, an error index ERI is introduced as  

 ERI max ( ) ( )id ex

x X
k x k x


   (16) 

with idk  and exk  denoting the identified and exact stiffness. Eventually, the piecewise constant stiffness 

is identified for all the three sets of measurements as displayed in Figure 5. It is found that the increase 

of number of measurement points from 11 to 51 makes ERI decrease substantially and the stiffness is 
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better identified; however, when the number continues to rise to 101, ERI increases, being even larger 

than that under 11 measurement points. To explain the unexpected result under 101 measurement points, 

the bending moment shown in Figure 5(d) is examined. The largest error is found to occur in the vicinity 

of zero bending moment where 0M   and hence 0w  ; that is to say, the nearby elements hardly 

deform and therefore, the perturbation and deviation in Figure 5(c) is reasonable due to the limited 

identifiability of the proposed approach. 

 

 

 

Figure 5. Damage identification in propped cantilever beam under right-end concentrated moment 

 

 

Figure 6. Stiffness identification in propped cantilever beam under concentrated force at x=0.3 
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Figure 7. Damage identification in propped cantilever beam using two sets of static measurements 

 

Figure 8. Convergence of bending moment at left end of propped cantilever beam 

 

To identify the stiffness of the beam with 101 measurement points accurately, the strategy presented 

in Section 2.3 is adopted. Another set of static measurements is required. The load is selected as a 

concentrated force 1F  kN at 0.3mx  . Under the single extra set of static measurements, the stiffness 

can be identified similarly and the bending moment is also obtained as exhibited in Figure 6. As 

expected, the identified stiffness perturbs in the vicinity of the zero bending moment. Fortunately, it is 

found that the location of the zero bending moment is different from that in the previous case (see Figure 

5(d)) and it is deduced that after combination of the extra measurements with the previous 

measurements, the stiffness can be well identified. Then, the identified results are shown in Figure 7. 

Evidently, the stiffness is perfectly identified. 

In addition, to show the convergence of the proposed two-step substitution algorithm, the bending 

moment at the left end of the beam ( 0)M x   is observed at each iteration step for all the three cases: 

the single primal set of static measurements, the single extra set of static measurements and combination 

of the former two. Detailed results are displayed in Figure 8. It is seen that the bending moment 

converges after 80 iterations for all the three cases, verifying the convergence of the two-step 

substitution algorithm. Furthermore, the combination case becomes convergent after only 20 iterations, 

being obviously faster than other two individual cases. This is reasonable since the introduction of an 

extra set of static measurements can enhance identifiability and stability of the algorithm. 
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4.  Conclusions 

A new approach based on the minimum constitutive relation error (CRE) principle has been proposed 

for damage identification in Bernoulli-Euler beams. A two-step substitution algorithm has been 

established to fulfil the practical implementation and its convergence has been proved. The flaw of the 

proposed approach for the stiffness in zero bending moment regions can be remedied by introducing 

another set of static measurements. Numerical tests have been carried out to verify the approach. The 

sound performance of the proposed approach in the following aspects has been observed: 

 It is well applicable to both statically determinate and indeterminate beam structures; 

 The proposed remedy for identifiability limits performs well; 

 It can well identify single damage as well as multiple damage, under concentrated or uniformly 

distributed testing loads; 

 Damage can be well identified under a noise up to 5%, verifying the robustness of the approach. 

 The two-step substitution algorithm converges well in practice. 

Therefore, it is believed that the proposed approach can serve as an effective tool for practical structural 

damage identification. 
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