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Abstract. This paper aims to identify parameters of Bouc-Wen hysteretic model using time-
domain measured data. It follows a general inverse identification procedure, that is, identifying
model parameters is treated as an optimization problem with the nonlinear least squares
objective function. Then, the enhanced response sensitivity approach, which has been shown
convergent and proper for such kind of problems, is adopted to solve the optimization problem.
Numerical tests are undertaken to verify the proposed identification approach.

1. Introduction
The hysteretic behavior is frequently observed in many physical systems [1,2], such as mechanical
systems, structural dampers, oscillatory circuits and so on. Mathematically, hysteresis is
characterized as a special type of memory-based relation between the input and the output,
that is, the output at a given time instant depends not only on the instantaneous input but
also on its past history. Various mathematical models [1, 3–5], including Preisach, Ishlinskii,
Bouc-Wen models, have been proposed to describe the hysteretic behavior. In this paper, the
focus is on the Bouc-Wen model since it can represent a wide variety of softening/hardening,
smoothing-varying/nearly-bilinear hysteretic behavior [6, 7].

Identifying the Bouc-Wen hysteretic parameters is an important and nontrivial task in
practical application due to the inherent nonlinearity and memory nature. Over the years,
two main kinds of identification methods have been developed. On the one hand, introducing
the time discretization and treating the parameters as state variables, the problem becomes a
typical discrete state equation and then, parameters are obtained through state estimate using
the extended/unscented Kalman filter [8–10] or the wavelet multiresolution analysis [11]. The
whole procedure is very simple, however, in order to make the discrete state equation well
approximate the original continuous problem, the sampling time step should be small enough.
What’s worse, the extended/unscented Kalman filter is not an unbiased estimator for such
strongly nonlinear problems and in wavelet analysis, the exponential parameter of the Bouc-
Wen model should be known a priori.

On the other hand, identification of the hysteretic parameters from the measured data belongs
to a class of inverse problem and is typically formulated as an optimization problem. The
objective function is often established as least squares of the error between the measured data
and the derived data and then, actual model parameters should minimize the objective function.
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Different kinds of the measured data have led to different identification procedures. Ni, Ko and
Wong [12] proposed to use the frequency-domain displacement data from periodic vibration
experiment and then, the Levenberg-Marquardt algorithm was adopted to solve the nonlinear
least squares optimization problem. However, getting the frequency-domain data of nonlinear
dynamic systems is not so straightforward as of linear systems and considerable efforts should
be taken for large amount of experimental frequency-domain data. In contrast, the time-domain
data is much more easily accessed. Yar and Hammond [7] used the displacement data as well
as the restoring force data in time domain to get the parameters. With both displacements
and restoring forces obtained, the hysteretic loop graph can be directly plotted and then,
parameters are easily derived from the graph. Sues, Roberts and Loh et al [13–15] identified
the parameters using the time-domain data through a multi-stage estimate scheme. Though
satisfactory accuracy as well as convergence was gained, the multi-stage approach is usually
time-consuming.

In the present work, the enhanced response sensitivity approach [16–18] which has been
widely used in structural damage identification is applied to estimate the Bouc-Wen hysteretic
parameters. There are several remarkable features. Firstly, it is within the framework of the least
squares optimization and therefore, there is no strict constraint on sampling time step. Secondly,
the easily available time-domain data is adopted and arbitrarily single kind or combinatory of
the data— the acceleration, the velocity, the displacement or even the restoring force can be used
to identify the parameters. Thirdly, the proposed approach can be easily extended to parameter
identification of other hysteretic models.

2. Problem statement
2.1. Bouc-Wen hysteretic model

Figure 1. SDOF system with Bouc-Wen hysteresis

Consider a single degree-of-freedom (SDOF) system with the Bouc-Wen hysteretic/restoring
force (see Figure 1). The governing equation for motion of the mass is given by{

mẍ+ cẋ+ kx+ r = f(t), t ≥ 0
x(0) = x0, ẋ(0) = ẋ0

(1)

where x is the displacement, x0, ẋ0 are initial displacement and velocity of the system and
m, c, k, r are respective mass, damping, stiffness and restoring force of the system as shown in
Figure 1. In case of the Bouc-Wen hysteretic model, the restoring force r with initial value
r(0) = r0 pertains to the following equation [19,20],

ṙ =
1

η
[Aẋ− ν(βr|r|n−1|ẋ|+ γ|r|nẋ)] (2)
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where η,A, ν, β, γ and n are design parameters for the hysteretic behavior. In order to render
the parameters identifiable and without loss of generality, the parameters η, ν, which are
typically used to control degrading and pinching behavior [10], respectively, are both set to
unity herein. The exponential parameter verifies n ≥ 1 and in order to fulfill the thermodynamic
admissibility [20], another constraint |γ| ≤ β should be enforced. In this paper, the linear system
parameters m, c, k as well as the Bouc-Wen hysteretic parameters A, β, γ, n are to be identified
and the admissible space for all parameters are set to be

A = {ααα := (1/m, c/m, k/m,A, β, γ, n) : 1/m > 0, c/m ≥ 0, k/m ≥ 0, A > 0, |γ| ≤ β, n ≥ 1}.
(3)

For practical computation, the problem (1) and (2) is reformulated as
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Figure 2. Graph of Bouc-Wen hysteretic loop with parameters A = 2, β = 1, γ = 0.5, n = 2

ẋ = F (x,ααα, t)⇔

 ẋ1 = x2

ẋ2 = α1(f(t)− x3)− α2x2 − α3x1

ẋ3 = α4x2 − (α5x3|x3|α7−1|x2|+ α6|x3|α7x2)
(4)

where x = [x; y; r] and from here on, vk denotes the kth element of the vector v. Then, given
parameters ααα ∈ A of the system, the displacement x, the velocity ẋ = y, the acceleration
ẍ = ẏ and the restoring force r of the forward problem are solved from (4) by the Runge-Kutta
methods, for which one can refer to the ode45 function of MATLAB for details. To visual, the
hysteretic loop graph under parameters m = 1, c = 0.2, k = 1, A = 2, β = 1, γ = 0.5, n = 2 and
loads f(t) = 2 cos(t) for t ∈ [0, 30] is shown in Figure 2.

2.2. Inverse problem
Now, assume that some measured data at the time points t1 < t2 < ... < tl has been obtained,
which is designated as a column vector R̂ = [R̂1; ...; R̂l] with R̂j := R̂(tj) and then, the
parameters are to be identified from the data; this forms a typical inverse identification problem.
Practically, the measured quantity R can be one or more of the four quantities—the displacement
x, the velocity ẋ, the acceleration ẍ and the restoring force r and for convenience purpose, it is
designated that R = Lx with L a linear operator, e.g., L = [1, 0, 0] for R = x and L = [0, ddt , 0]
for R = ẍ. Special attention should be paid to the case when only the restoring force r is
measured since then the parameters am, ac, ak, aA, aβ, aγ, n can lead to the same restoring force
solution for all positive constants a > 0. Thus, when only the restoring force r is measured,
one shall additional set, for instance, the mass to be known and then, other parameters are well
identifiable.
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Mathematically, one can deduce from the forward problem (4) that the measured quantity
at the time points t1 < t2 < ... < tl is an implicit function of the parameters and therefore, is
expressed as R(ααα) := [R(ααα, t1); ...;R(ααα, tl)]. As usual, the inverse identification procedure can
be formulated as: find the actual parameters ααα∗ ∈ A such that the objective function g(ααα)—

defined as the weighted least squares of the error between the measured data R̂ and the derived
data R(ααα)—is minimized, or, more precisely,

ααα
∗ = arg min

ααα∈A

{
g(ααα) := ||R̂−R(ααα)||2W

}
(5)

where W is a user-defined (positive definite) weight matrix and ||v||2W = vTWv. Under
the above setting, identifying the parameters has become an strongly nonlinear optimization
problem. In what follows, how to efficiently and robustly get the minimizer of the objective
function g(ααα) by an enhanced response sensitivity approach is elaborated.

3. Enhanced response sensitivity for parameter identification
Usually, R(ααα) is a nonlinear function of ααα and therefore, the objective function g(ααα) is in
the nonlinear least squares form. For such a nonlinear least-squares optimization problem (5),
iterative methods should be used for which the key ingredient is to determine an update ∆ααα

from a given ᾱαα so that g(ᾱαα + ∆ααα) becomes as small as possible. The Newton method is costly

and improper [18] for such a problem. A simple yet feasible strategy is to linearize R̂ −R(ααα)
at ᾱαα [18, 21], i.e.,

R̂−R(ααα) = ∆R(ᾱαα)− S(ᾱαα)∆ααα; ∆R(ᾱαα) := R̂−R(ᾱαα),S(ᾱαα) = ∇αααR(ᾱαα),∆ααα = ααα− ᾱαα. (6)

Specifically, the key matrix S(ααα) is computed as

S(ααα) = [∇αααR(ααα, t1); ...;∇αααR(ααα, tl)];∇αααR(ααα, tk) = L∇αααx(ααα, tk). (7)

Note that the key term ∇αααx is just the (first-order) sensitivity of the response x to the
parameters ααα and this initiates the name ’response sensitivity approach’. Obviously, ∇αααx is
time-dependent and pertains to the following ordinary differential equation by applying the
differential chain rule to (4),

d(∇αααx)

dt
= ∇xF (x,ααα, t) · ∇αααx +∇αααF (x,ααα, t). (8)

For the SDOF system (4) with Bouc-Wen hysteresis, there are

∇xF (x,ααα, t) =

 0 1 0
−α3 −α2 −α1

0 ∂r
∂x2

∂r
∂x3

 ;
∂r
∂x2

:= α4 − (α5x3|x3|α7−1sgn(x2) + α6|x3|α7)
∂r
∂x3

:= −α7(α5|x3|α7−1|x2|+ α6|x3|α7−1x2sgn(x3))

(9)
and

∇αααF (x,ααα, t) =

 0 0 0 0 0 0 0
f(t)− x3 −x2 −x1 0 0 0 0

0 0 0 ∂r
∂α4

∂r
∂α5

∂r
∂α6

∂r
∂α7

 ;

∂r

∂α4
: = x2,

∂r

∂α5
:= −x3|x3|α7−1|x2|,

∂r

∂α6
: = −|x3|α7x2,

∂r

∂α7
:= −(α5x3|x3|α7−1|x2|+ α6|x3|α7x2) ln(|x3|+ ε)

(10)



5

1234567890

12th International Conference on Damage Assessment of Structures   IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 842 (2017) 012021  doi :10.1088/1742-6596/842/1/012021

where sgn(·) is the usual sign function and ε > 0 is a small positive constant, e.g.,=1.0e-32, to
guarantee the positiveness of |x3|+ε for ln(·) function. Combining (4) with (8) and setting ααα = ᾱαα,
the response R(ᾱαα) and the response sensitivity S(ᾱαα) are obtainable. Using the linearization (6),
an approximate objective function ĝ(ᾱαα,∆ααα) = ||∆R(ᾱαα) − S(ᾱαα)∆ααα||2W is obtained which is in
the linear least squares form.

The update ∆ααα, if computed as minimizer of the linear least squares objective function
ĝ(∆ααα, ᾱαα), can be easily and directly obtained; however, ĝ(∆ααα, ᾱαα) is only an approximation of
the original objective function g(ᾱαα+∆ααα) through linearization. Note that linearization can give
good approximation of the original nonlinear nonlinear function only when ∆ααα + ᾱαα is in the
vicinity/trust-region of ᾱαα, in other words, the trust-region constraint ||∆ααα|| ≤ η should hold
for some small positive number η. On considering this, a reliable way to get the update ∆ααα is
clarified: for a certain η > 0, one has

∆ααα = arg min
δααα∈A−ᾱαα,||δααα||≤η

||∆R(ᾱαα)− S(ᾱαα)δααα||2W. (11)

Moreover, to measure how well the linearized version ĝ(∆ααα, ᾱαα) agrees with the original nonlinear
version g(ᾱαα + ∆ααα), an agreement indicator ρ(∆ααα, ᾱαα) [18,21] is introduced,

ρ(∆ααα, ᾱαα) :=
g(ᾱαα)− g(ᾱαα + ∆ααα)

ĝ(0, ᾱαα)− ĝ(∆ααα, ᾱαα)
=

||∆R(ᾱαα)||2W − ||∆R(ᾱαα + ∆ααα)||2W
||∆R(ᾱαα)||2W − ||∆R(ᾱαα)− S(ᾱαα)∆ααα||2W

. (12)

Good agreement requires ρ(∆ααα, ᾱαα) ≥ ρcr where ρcr often verifies ρcr ∈ [0.25, 0.75]. To
conclude, in view of (11), different ηs result in different updates ∆ααα and then, one natural
idea is to properly choose the η such that the resulting update verifies the agreement condition
ρ(∆ααα, ᾱαα) ≥ ρcr, which constitutes just the core of trust-region algorithms [21].

In the above derivation, the response sensitivity approach is enhanced with the trust-region
restriction, leading to the enhanced response sensitivity approach. Nonetheless, solving the
inequality-constraint problem (11) is not easy and straightforward at all. Herein, an equivalent
but much simpler manner [18] to deal with the trust-region consideration by the Tikhonov
regularization is adopted. The procedure reads: find a proper Tikhonov regularization parameter
λ > 0 such that the following update

∆αααλ = arg min
δααα∈A−ᾱαα

{
||∆R(ᾱαα)− S(ᾱαα)δααα||2W + λ||δααα||2

}
= [ST (ᾱαα)WS(ᾱαα) + λI]−1ST (ᾱαα)W∆R(ᾱαα)

(13)

satisfies the agreement condition ρ(∆αααλ, ᾱαα) ≥ ρcr. On the one hand, (13) is still posed to
be a linear least squares problem and therefore, is directly solved. On the other hand, the
proper Tikhonov regularization parameter λ > 0 can be simply found as follows: (a) set
the regularization parameter λL(ᾱαα) obtained by the L-curve method [22, 23] as the initial
regularization parameter, i.e., λ := λL(ᾱαα) since such a choice has already been shown to work
well for many linear system parameter identification problems [16, 17]; (b) compute the update
∆αααλ as (13); (c) calculate the agreement indicator ρ(∆αααλ, ᾱαα); (d) if the agreement condition
is satisfied, terminate the procedure and both the proper λ and the proper update ∆αααλ are
obtained, otherwise, increase λ up to a factor a > 1, i.e., λ := aλ and return to step (b). Up
till now, a general way to get a proper update from a certain ᾱαα has been presented and based
on this, an iterative yet convergent algorithm [18] to get the minimizer of g(ααα) or identify the
parameters is naturally established as given in Table 1.

4. Numerical tests
The SDOF system with Bouc-Wen hysteretic force in Figure 1 is elaborately studied herein
to testify the proposed parameter identification approach. Actual system parameters are
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Table 1. Algorithmic details for enhanced response sensitivity approach
- set initial parameters ααα1 ∈ A and define weight matrix W,
- define error tolerance tol (e.g., = 10−6) for convergence criterion,
- fix the maximum number of iterations Nmax (e.g., =1000),
- fix trust-region parameters ρcr ∈ [0.25, 075] (e.g., =0.5) and a > 1 (e.g., =2),
- set the maximum number of steps for trust-region procedure Ntr, (e.g.,=20),
- load the measured response data R̂,
- for k = 1 : Nmax

- solve (4) and (8) to get response R(αααk) and response sensitivity S(αααk),

- compute response change ∆R = R̂−R(αααk),
- use L-curve method to get the initial regularization parameter λL(αααk),
- for i = 1 : Ntr % Trust-region procedure

- λ = ai−1λL(αααk),
- compute the update ∆ααα = [ST (αααk)WS(αααk) + λI]−1ST (αααk)W∆R,
- if αααk + ∆ααα /∈ A continue,
- solve (4) to get response R(αααk + ∆ααα),

- compute new response change ∆Rnew = R̂−R(αααk + ∆ααα),

- calculate the agreement indicator ρ =
||∆R||2W−||∆Rnew||2W

||∆R||2W−||∆R−S(αααk)∆ααα||2W
,

- if ρ ≥ ρcr break,
- end for
- update stiffness parameters αααk+1 = αααk + ∆ααα,
- if ||∆ααα||/||αααk+1|| ≤ tol break.

- end for
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Figure 3. Measured data with 5% noise for parameter identification: (a) acceleration ẍ, (b)
displacement x and (c) restoring force r

ααα∗ = (1, 0.2, 1, 2, 1, 0.5, 2). A load f(t) = 2 cos(t) is enforced and the initial states are zero.
Herein, the measured data is obtained from numerical simulation over the time domain [0, 10]
at the sampling rate of 500Hz and possible measurement noise is added to simulated solution as
follows,

d̂ = d + enoiseRandvar(d) (14)

where d = [d(t1); ...; d(tl)], d̂ represents the respective simulated and polluted solutions, enoise is
the noise level (e.g., =5%), Rand is a standard normal distribution vector of length l and var(d)
is the variance over the time history d. To visual, the simulated acceleration, displacement and
restoring force with measurement noise enoise = 5% are shown in Figure 3.

Four identification scenarios as detailed in Table 2 are considered. The algorithm in Table
1 is adopted to derive the parameters from the measured data in all four scenarios, for which,
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Table 2. Four identification scenarios for SDOF system with Bouc-Wen hysteresis
scenario measured quantities measurement noise

1 acceleration ẍ 0%
2 acceleration ẍ 5%
3 displacement x and restoring force r 0%
4 displacement x and restoring force r 5%

Table 3. Four identification scenarios for SDOF system with Bouc-Wen hysteresis
scenario identified results

1 (1.0000,0.2000,1.0000,1.9999,1.0001,0.4997,2.0005)
2 (0.9985,0.1933,0.9989,2.0128,1.0202,0.4678,1.9716)
3 (1.0000,0.2000,1.0000,1.9998,1.0002,0.4996,2.0006)
4 (1.0001,0.2003,1.0001,2.0028,0.9990,0.5000,2.0241)
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Figure 4. Identification procedure for scenario 2 (left) and scenario 4 (right)

the initial parameters are set to be ααα1 = (3, 0.5, 3, 3, 2, 1.5, 3), the weight matrix W equals to
identity matrix and other parameters including tol,Nmax, ρcr, a,Ntr take the default values
in corresponding brackets of Table 1. Using this algorithm, the parameters can be identified
and results are displayed in Table 3. Moreover, to see how the results converge in the iterative
procedure, the results in each step of the algorithm are recorded and those for scenarios 2 and
4 are plotted in Figure 4. In case of no noise, either the measured ẍ or the measured x, r can
give rise to quite accurate results. While in case of 5% noise, the maximum relative error for
measured ẍ (scenario 2) reaches 6% but is only 1.2% for measured x, r (scenario 4) and the
results are identified in 42 steps for scenario 2 and 16 steps for scenario 4, this is somehow
reasonable since more data often leads to more accurate and faster identification, nevertheless,
the identified results are satisfactory.

5. Conclusions
A general way to identify the Bouc-Wen hysteretic parameters has been presented in this paper.
It follows the general inverse identification procedure, i.e., transforming the identification to
an optimization problem and therefore, can be easily generalized to other hysteretic model
parameter identification problems. Then, a recently-proposed enhanced response sensitivity
approach is used to solve the nonlinear least squares optimization problem. Numerical tests on
four identification scenarios, using single acceleration measurement or displacement and restoring
force measurements, with 0% or 5% measurement noise are conducted. All parameters are well
identified, highlighting the proposed identification approach.
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