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Abstract. We forecast the future constraints on scale-dependent parametrizations of galaxy
bias and their impact on the estimate of cosmological parameters from the power spectrum
of galaxies: in our approach we perform a Fisher matrix analysis with two different
parametrizations of scale-dependent bias. The two main results obtained from the analysis
are: first, allowing for a scale-dependent bias does not significantly increase the errors on the
other cosmological parameters apart from the rms amplitude of density fluctuations, σ8, and the
growth index γ, whose uncertainties increase by a factor up to two, depending on the bias model
adopted. Second, we find that the accuracy in the linear bias parameter b0 can be estimated to
within 1-2% at various redshifts regardless of the fiducial model. The non-linear bias parameters
have significantly large errors that depend on the model adopted.

1. Introduction

In the next future large experiments like DESI [1] and Euclid [2] will use galaxy clustering to
simultaneously obtain information on the geometry of the Universe and the growth rate of density
fluctuations by measuring the galaxy power spectrum. Since one typically observes the spatial
fluctuation in the galaxy distribution, not in the mass, some independent phenomenological or
theoretical insight of the mapping from one to the other is mandatory. This mapping, which
is commonly referred to as galaxy bias, parametrises our ignorance on the physics of galaxy
formation and evolution and represents perhaps the most serious source of uncertainties in the
study of the large scale structure of the Universe [3].

It was shown in [4] that future galaxy redshift surveys contain enough information to break the
degeneracy between the galaxy bias, the clustering amplitude and the growth factor, effectively
allowing to estimate galaxy bias from the data themselves. We forecast the errors on cosmological
parameters and galaxy bias parameters and we assess the robustness of our predictions against
the choice of the bias and the fiducial model (for more details see [5]). We consider two different
parametrizations for the scale-dependent bias: a simple power-law model and the polynomial
model proposed by [6]. Both provide a reasonable good fit to mock galaxies similar to those
that will be targeted by Euclid [7]. As dataset we assume a wide spectroscopic galaxy redshift
survey spanning a large redshift range and consider, as a reference case, the upcoming Euclid
survey [8].
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2. Theoretical Setup

Following [9] we model the observed galaxy power spectrum, Pobs at the generic redshift z as:

Pobs(z, k) = G2(z)b2(k, z)

(

1 +
f(z)

b(z, k)
µ2

)2 D2
Af (z)H(z)

D2
A(z)Hr(z)

P0r(k) + Pshot(z) (1)

where DA is the angular-diameter distance, H(z) is the so called expansion history, i.e. the
Hubble constant at redshift z, G(z) is the linear growth function normalized to unity at z = 0,
f(z) = d logG/d log a is the growth rate, b(z, k) is the scale-dependent bias, P0(k) is the matter

power spectrum at the present epoch, µ is the cosine angle between the wavenumber vector ~k
and the line of sight direction, Pshot is the Poisson shot noise contribution to the power spectrum
and the subscript r identifies the fiducial model, this one is the case of scale-independent bias
(b0 = 1 and n = 0). We parametrize the growth rate as f = Ωγ

m with a constant growth index
γ.

We perform the forecast using the Fisher matrix information method, we approximate the
likelihood as a Gaussian in the parameters around a particular fiducial model, i.e. a value of
the parameters that is assumed to approximate the 2-point clustering properties of galaxies in
the real Universe. We set h0 = 0.7, Ωm0 = 0.25; Ωb0 = 0.0445; Ωk0 = 0; the primordial slope
ns = 1; and the dark energy equation of state w0 = −0.95. Finally, we set γ = 0.545 and rms

density fluctuation at 8 h−1 Mpc σ8 = 0.8 (for more technical details see [5]).
Assuming that the fluctuation Fourier modes are Gaussian variates, the Fisher matrix at each

redshift shell is [10, 11]

Fij = 2π

∫ kmax
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· Veff ·

k2

8π3
· dk (2)

where the derivatives are evaluated at the parameter values of the fiducial model. Here, the
maximum frequency kmax(z) is set by the scale at which fluctuations grow nonlinearly while
kmin(z) by the largest scale that can be observed in the given redshift shell. We set a hard
small scale cut-off kmax = 0.5h−1 Mpc at all redshifts which, together with the damping

terms P = Pobse
−k2µ2σ2

r and exp
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account for non linearities [5] . On

large scale we set kmin = 0.001h−1 Mpc. Veff indicates the effective volume of the survey defined
as:

Veff ≡

∫
[

n (~r)P (k, µ)

n (~r)P (k, µ) + 1

]2

d~r =

[

nP (k, µ)

nP (k, µ) + 1

]2

Vsurvey (3)

where n = n(z) is the galaxy density at redshift z. The second equality in Equation (3) holds
if the co-moving number density is constant within the volume considered. This assumption,
which we adopt in our analysis, is approximately true in a sufficiently narrow range of redshifts.
For this reason, we perform the Fisher matrix analysis in different, non-overlapping redshift
bins, together with their mean galaxy number density. The redshift range, the size of the bin
and the number density of objects roughly match the analogous quantities that are expected in
the Euclid spectroscopic survey (see [5]).

2.1. Analytic models for scale-dependent bias

Our goal is to assess the impact of a scale-dependent galaxy bias b(z, k) in the analysis of future
galaxy surveys [10]: for this purpose we have decided to adopt two rather simple models, the
Power Law and the Q-Model. The reason for choosing these models are found in their simple
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Table 1. Bias parameters for the fiducial models considered in this work (see [5]).
FM1-PL FM1-Q

n = 0 n = 1 n = 2

z b0 b0 b1 b0 b1 b0 Q A
all 1 1 0 1 0 1 0 0

form allows us to compute the power spectrum derivatives in the Fisher matrix analytically.
The Power Law bias model has the form [12]:

b(z, k) = b0(z) + b1(z)

(

k

k1

)n

, (4)

where the pivot scale k1 is introduced only to deal with dimensionless parameters. Its value
does not impact our analysis and, without lack of generality, we set k1 = 1 h Mpc−1. The
slope n is not treated as a free parameter but is kept fixed. We note that the Power Law model
is similar to the one proposed by [13] in those k−ranges in which the power spectrum can be
approximated by a power law. The Q-Model is also phenomenological. It has been proposed
by [6] from the analysis of mock halo and galaxy catalogs extracted from the Hubble volume
simulation. Its analytical expression is:

b(z, k) = b0(z)

[

1 +Q(z)(k/k1)
2

1 +A(z)(k/k1)

]1/2

. (5)

In our analysis all three parameters b0, Q and A are free to vary in each redshift bin. Therefore,
the Q-Model has additional degrees of freedom with respect to the Power Law model. Finally,
we need to specify the parameters of the fiducial model (denoted FM1-PL for the power law bias
and FM1-Q for the Q-model). The parameters that identify the fiducial models are listed in
Tab. 1. Note that we also consider for comparison the case of scale-independent bias (first row).
This case is identical to choosing n = 0 in the power law model, i.e. to b(z) = b0(z) + b1(z), so
we will refer to this case as n = 0 fiducial. In order to evaluate the Fisher matrix we compute
the derivatives of the power spectrum in Eq. (1) with respect to the parameters on the fiducial
model. The 1σ error for each parameter of the model, pi, is σpi =

√

(F−1)ii, where F−1 is the
inverse Fisher matrix (for technical procedure see [5]).

3. Results

3.1. Power law case

For the power law model we have explored two cases corresponding to different choices of the
power law index: n = 1 and n = 2. The parameters of the fiducial models are reported in Tab. 1.
The 1σ errors on the cosmological parameters are listed in Tab. 2. For all parameters except the
mass variance σ8 and the growth index γ the errors are largely independent from n. In fact, in
most cases they slightly decrease when the scale dependence is stronger. The values of σ8 and γ
show the opposite trend, although the effect is quite small in respect to other parameters (below
10 %). We conclude that allowing for a scale dependent bias has little effect on the precision in
which we can measure most cosmological parameters. It is interesting to note that the accuracy
of the growth rate γ is 4-5% when marginalising over all parameters, including the scale and
redshift-dependent bias.

The expected 1σ errors for the bias parameters b0 and b1 are listed in Tab. 3 for the cases
n = 0, 1 , 2: the errors on b1 are larger than those on b0 and their size increase with n, while
when n = 2 they are ten times larger than n = 1. On the contrary, errors on b0 weakly depend
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Table 2. 1σ errors on cosmological parameters for the fiducial models adopted in this work (see
[5]).

FM1-PL FM1-Q
Error n = 0 n = 1 n = 2
σh 0.036 0.038 0.037 0.039
σΩmh2 0.015 0.016 0.015 0.016
σΩbh2 0.0034 0.0036 0.0034 0.0036
σns

0.036 0.042 0.036 0.044
σγ 0.024 0.025 0.028 0.029
σσ8

0.0036 0.0044 0.0045 0.0047

on n. This is not surprising since b1 is constrained by the power spectrum behaviour at high k,
the larger the value of n the larger the values of k, where our analysis is less sensitive due to the
damping terms and the hard kmax cut. A second trend is with the redshifts: errors on the bias
parameters increase with the redshift, irrespectively of the value of n as shown in Fig. 1. This
merely reflects the fact that the effective volume of the survey monotonically decreases when
moving to high redshifts due to the smaller galaxy densities.
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Figure 1. 68 % probability contours
for σ8 and γ. Black, continuous:
standard scale-independent case, i.e.
n = 0. Red, Dotted: FM1-PL with
n = 1. Cyan, continuous: FM1-Q.
Blue, Dot-Dashed: FM2-PL with n =
2. Green, dashed: FM2-Q. The FM1-
PL case when n = 1 is only slightly
larger than that corresponding to
a scale-independent bias (for further
details see [5]).

When compared to the results of [12], in which bias was assumed to be scale-independent, we
notice that our constraints on b0 are twice weaker than their “optimistic, internal bias” case at
z = 1.8 and z = 2.0. This quantifies the effect of allowing for an additional degree of freedom,
the scale dependent bias, represented by the new parameter b1. In Fig. 2 we show the 68 %
probability contours in the b0-b1 plane for n = 1 and n = 2, respectively. Larger ellipses refer
to higher redshift bins. For the case n = 1 there is a strong anti-correlation between b0 and b1
stemming from the fact that an increase in the linear bias term b0 can be partially compensated
by reducing the amplitude of the scale-dependent term b1. Increasing the scale dependency, i.e.
setting n = 2 reduces the correlation between b0 and b1. This is due to the fact that a strong
scale dependent bias has little impact on large scales (k ≪ k1) and therefore cannot effectively
compensate a variation of the linear bias on the scales that are relevant for our analysis.

3.2. Q-model

This version of Type 1 fiducial model is characterised by three parameters, b0, A and Q, rather
than two. We have repeated the same analysis performed as in the FM1-PL case and summarised
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Table 3. Errors on bias parameters for the fiducial models adopted in this work (see [5]).
FM1-PL FM1-Q

n = 0 n = 1 n = 2
z σb0 σb0 σb1 σb0 σb1 σb0 σQ σA
0.6 0.007 0.013 0.14 0.0081 1.2 0.017 3.04 0.35
0.8 0.008 0.013 0.13 0.0093 0.97 0.017 2.5 0.32
1.0 0.009 0.013 0.12 0.011 0.86 0.017 2.2 0.31
1.2 0.010 0.014 0.12 0.012 0.82 0.018 2.2 0.31
1.4 0.011 0.014 0.13 0.013 0.91 0.019 2.5 0.34
1.6 0.012 0.016 0.16 0.014 1.2 0.023 3.4 0.42
1.8 0.014 0.019 0.22 0.016 1.9 0.027 5.4 0.59
2.0 0.018 0.026 0.34 0.019 3.3 0.037 9.4 0.97

the results in Tabs. 2 and 3. The errors on the cosmological parameters are very similar to those
obtained in the FM1-PL case, confirming that the accuracy in the estimate of the cosmological
parameters is not much affected by the adoption of a scale-dependent bias model, even when we
introduce an additional degree of freedom. Errors on the linear bias parameters b0 (Tab. 3) are
small, with a magnitude similar to that of the FM1-PL case with n = 1. On the contrary, the
errors on A and Q are quite large, although we cannot directly compare their size to the errors
on b1. This is not entirely surprising: it is the effect of having one more parameter to marginalize
over. To further investigate the possible degeneracy among the bias parameters we plot the 68
% uncertainty contours in the A-Q plane in Fig. 3. The size of the errors, and consequently the
area of the corresponding ellipse increases with the redshift. They are positively correlated and
the strength of the correlation also increases with the redshift.

Figure 2. 68% probability contours
for the parameters b0 and b1 of the
FM1-PL model. The dotted red line is
the case with n = 1 while the dashed
line in blue shows the case n = 2. The
redshift bins are z = 0.6, 1.8, 2.0 (see
[5]).

4. Conclusions

We have investigated the impact of a scale-dependent galaxy bias on the results of the clustering
analysis performed in next generation surveys (see [5]). Our main results can be summarised as
follows:

• Allowing for a scale dependent bias does not increase significantly the errors on cosmological
parameters, except for the growth index γ and the rms density fluctuation σ8. More
specifically, in our analysis we find that errors on h0, Ωm0, Ωb0, Ωk0, and ns are only
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Figure 3. 68 % probability contours
for the parameters A and Q of the
FM1-Q model. We decided to plot
only the bins z = 0.6, 0.8, 1.6, 1.8, 2.0,
to improve clarity: larger values of
redshift correspond to ellipses with
larger semiaxis.

slightly larger than those expected when one assumes that bias is scale independent. In
addition, γ and σ8 are correlated. This correlation is expected since the clustering analysis
constrains the amplitude of the power spectrum, proportional to the product b(k, z)σ8(z)
and its redshift distortions, which are proportional to f(z)/b(k, z).

• The linear bias parameter b0 can be determined within a few %. The relative error is rather
insensitive to the choice of the fiducial and slightly increases with the redshift. As expected,
the errors increase with the number of free parameters in the model and therefore is larger
in the Q-Model than in the Power Law one.

• The accuracy with which one can estimate the bias parameters that describe the scale
dependency depends on the bias model and on the fiducial model. This is not surprising
since in this case the scale dependence is pushed at small scales, where our Fisher matrix
analysis, optimised to probe linear to mildly nonlinear scales, is less sensitive.
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