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Abstract. MICROSCOPE is a French Space Agency mission that aims to test the Weak
Equivalence Principle in space down to an accuracy of 10−15, two orders of magnitude better
than the current constraints. The MICROSCOPE satellite was launched on April 25, 2016. We
describe the MICROSCOPE mission, its measurement principle and instrument, and report on
the status of its in-orbit commissioning as of September 2016.

1. Introduction

From the deviation of Mercury’s perihelion to gravitational redshift to gravitational waves to
the existence of black holes, General Relativity (GR) continues to pass experimental tests one
century after its inception. The recent direct detection of gravitational waves by LIGO [1, 2]
not only superbly matches expectations from GR, but it also directly proves the existence of
back holes. So many successes would tend to consider GR as the correct theory for gravitation.
However, fundamental physics has faced major challenges for decades: how to unify the (as
successful) quantum standard model of particle physics with GR, and how to explain the
acceleration of the cosmological expansion?

To answer those questions, we may need to look deeply in the foundations of GR themselves.
A particularly important test is to look for a violation of the Weak Equivalence Principle (WEP),
a cornerstone of GR. MICROSCOPE (Micro-Satellite à trâınée Compensée pour l’Observation
du Principe d’Equivalence [3, 4, 5]) is a drag-free microsatellite which aims to test the WEP
down to the 10−15 level, and was launched on April 25, 2016. In this paper, we first briefly
introduce the WEP in Sect. 2; we then give a short overview of MICROSCOPE in Sect. 3
before stating on its status (as of September 2016) in Sect. 4. We then briefly report on the
ground segment status in Sect. 5 before concluding.

2. Weak Equivalence Principle

2.1. Weak Equivalence Principle and General Relativity

The Weak Equivalence Principle (aka universality of free fall) states that two bodies in the
same gravitational field experience the same acceleration, independently of their mass and
composition. Together with the local position invariance (laws of physics do not depend on
the position) and the local Lorentz invariance (laws of physics do not depend on the speed of
the observer in an inertial frame), this principle constitutes the Einstein Equivalence Principle
(EEP), which is at the basis of Einstein’s General Relativity. Any violation of the WEP (and
of the EEP thereof), would indicate that GR is not the ultimate theory of gravity.
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2.2. Tests of the Weak Equivalence Principle

The WEP has been tested throughout the 20th century with an increasing precision (see [6] for
a review). Deviations from WEP are usually described by the Eötvös parameter

η = 2
(mg/mi)A − (mg/mi)B
(mg/mi)A + (mg/mi)B

(1)

where “A” and “B” are two bodies experiencing the same gravitational field, mg is the
gravitational mass and mi the inertial mass. If the WEP holds, then mg = mi for all bodies,
and η = 0. Figure 1 shows how the upper limit on η has decreased during the 20th century, as
more accurate experiments have been put forth. The first measurement was made by Eötvös
with a torsion pendulum, and allowed him to constrain the WEP at a level of 10−8. Most
recently, the monitoring of the Earth and Moon system with the Lunar Laser Range (LLR –
e.g. [7, 8]), and the measurement by the Eöt-Wash group with a torsion pendulum, reached the
best limits η 6 10−13 [9]. On-ground measurement are however reaching their limits in terms of
signal-to-noise ratio, making a better measurement more difficult. As a consequence, efforts are
underway to perform WEP tests with atomic interferometers (e.g. [10]). Another solution to
increase the precision on the WEP is to test it in space: this is the goal of the MICROSCOPE
mission. Theories currently developed to explain the accelerated expansion of the Universe, or
to unify GR and quantum physics, predict that WEP is violated at a level 10−18 6 η 6 10−13

[11, 12]. MICROSCOPE is expected to measure η at the level 10−15: it will thus allow us to
probe a significant part of the parameter space under consideration by those new theories, and
to start discriminating against theories.

Figure 1. Tests of WEP
throughout the 20th cen-
tury. The arrow on the
lower right corner shows the
expectation for MICRO-
SCOPE. Figure adapted
from [6].

3. MICROSCOPE

MICROSCOPE, launched from Kourou on April 25, 2016, tests the WEP by comparing
the acceleration experienced by two free-falling test masses in the Earth’s gravity field. To
this aim, it embarks two ultrasensitive electrostatic differential accelerometers, each of them
consisting of two coaxial cylindrical test masses whose motion is electrostatically constrained.



3

1234567890

11th International LISA Symposium  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 840 (2017) 012028  doi :10.1088/1742-6596/840/1/012028

In one (reference – ‘REF’) accelerometer, the test masses are made of the same material to
demonstrate the experiment’s accuracy; they are made of different materials in the second (‘EP’)
accelerometer, which is used to test the WEP. The difference of electric potentials applied to
keep the masses in equilibrium is a measure of the difference in the proof masses motion; hence,
a non-zero difference of applied potentials is a measure of a WEP violation.

Figure 2 shows the measurement principle for the EP accelerometer. At leading order, its
test masses experience the same gravitational field (red arrows) because their centers of mass
are very close to each other (of the order of micrometers). In reality, the fact that the centers
of mass are not exactly the same lead to a nuisance signal due to the gradient of the Earth’s
gravity field (see Eq. 2 below), that can easily be corrected for. If the WEP is violated, then
the difference in accelerations along the EP test axis (horizontal black arrows, along which the
test is performed) will be modulated by the instrument’s motion around the Earth. We then
expect to detect a sine wave corresponding to the modulation of the difference of the voltages
applied in the two test-mass electrostatic configuration to keep them centered. Depending on
the spacecraft’s spin about the axis normal to the orbital plane (either null for an inertial session
as depicted by the figure, or non-null for a spined session), the WEP violation signal will have
a typical, expected frequency.

Figure 2. MICRO-
SCOPE’s measurement
principle.

The difference of acceleration deduced by the measured difference in applied voltages can be
written as:

−→
Γmeas,d = [Mc]

(

η−→g + ([T ]− [In])
−→
∆ − 2 [Ω]

•

−→
∆ −

••

−→
∆

)

+
−−→
K0,d + [Md]

−→
Γ App,c +

−→
Γmeasquad,d +

−→
Γ n,d + [Cd]

•
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Ω (2)

where η is the EP violation signal we are looking for; −→g is the Earth gravity field at the

spacecraft’s center-of-mass;
−→
∆ =

−−−→
OiOj is the distance between the center of the differential

accelerometer’s test masses;
−→
K0,d is the accelerometer’s bias; [Mc] is the common mode

sensitivity matrix; [T ] is the Earth gravity gradient tensor; [In] is the inertial acceleration

tensor, [Ω]
•

−→
∆ is the Coriolis acceleration, with [Ω] the spacecraft’s angular velocity matrix;
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[Md] is the differential mode sensitivity matrix;
−→
Γ App,c is the common mode acceleration and

includes non-gravitational external accelerations;
−→
Γmeasquad,d is the quadratic residuals;

−→
Γ n,d is

the instrument’s noise; and [Cd] is the differential angular to linear coupling matrix. All nuisance
parameters are either corrected for through careful modeling (e.g. gravity gradient tensor) or
calibrated in flight (e.g. bias [13, 14]), or minimized by design of the instrument and of the
satellite (e.g. inertial tensor, instrument’s noise).

MICROSCOPE’s instrument (T-SAGE – Twin Space Accelerometer for Gravitation
Experiment) and its performance have been described elsewhere (e.g. [3, 4]). As aforementioned,
the instrument’s mechanical core consists of two differential accelerometers (Sensor Units –
SU), whose test masses are co-axial cylinders kept in equilibrium with electrostatic actuation.
The test masses’ materials were chosen carefully so as to maximize the scientific return of the
experiment and to optimize their industrial machining: the EP test masses are made of alloys of
Platinum-Rhodium (PtRh10 – 90% Pt, 10% Rh) and Titanium-Aluminium-Vanadium (TA6V –
90% Ti, 6% Al, 4% V), while the REF test masses are made of the same PtRh10 alloy. For each
SU, the test masses are controlled electrostatically, through electrodes, without any mechanical
contact; only a thin 7 µm-diameter gold wire, used to fix the masses’ electrical potential to
the electronics reference voltage, provides a mechanical contact (and associated, accounted for,
damping noise) between the test masses and their cage. The test masses’ control is performed
by an electronic servo-loop. Two Front End Electronics Unit (FEEU) boxes (one per SU)
include the capacitive sensing of masses, the reference voltage sources and the analog electronics
to generate the electrical voltages applied to the electrodes; an Interface Control Unit (ICU)
includes the digital electronics associated with the servo-loop digital control laws, as well as the
interfaces to the satellite’s data bus. Additionally, the same electronics’ output is used by the
drag-free system of the satellite.

Performance analyses predict a noise Amplitude Spectral Density of 10−12 m/s2/Hz1/2 in the
frequency band 10−3 − 0.03 Hz, compatible with a test of the WEP at a 10−15 accuracy (see [3]
for a detailed uncertainty analysis).

The spacecraft is derived from the CNES’s Myriad series of microsatellites. With a mass of 325
kg and dimensions of 1380x1040x1580 mm3, it has been designed to be as symmetric as possible,
with the T-SAGE instrument sitting at its center-of-mass so that the self-gravity is minimized.
No moving mechanical parts can contaminate the Equivalence Principle measurement. Its
propulsion system, based on cold gas, is derived from the GAIA mission and supplied by ESA.
The MICROSCOPE mission uses a Sun-synchronous, very low eccentricity (1.5×10−3), 710 km
orbit.

4. MICROSCOPE’s first few months in orbit: commissioning phase status

From early May 2016 to August 2016, the satellite was partially in eclipse. The periodic sun-
shade transitions prevented a fine thermal control of the payload, and therefore a robust WEP
test. This time was hence dedicated to the satellite’s and instrument’s commissioning phase. All
the modes of the satellite operation were successfully verified. This section presents the status
of the satellite and of the mission as of September 2016.

4.1. First in-orbit instrument health checks

The T-SAGE payload was first switched on on May 2nd 2016, one week after launch, after CNES
checked orbital parameters and the main satellite’s operational functions. The first operation
consisted in a health verification in order to assess the integrity of the instrument, while it was
still in a pre-launch configuration (i.e. with the test masses blocked in their electrostatic cage).
The main functionalities verification were obtained through dedicated housekeeping data as well
as through the science data themselves contained in the telemetry:
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• at SU level: we checked that the gold wires survived the launch and did not break. The
four of them were successfully detected through a specific telecommand. We also checked
that all four masses were still blocked.

• at FEEU level: the “as expected” test masses position measurement validated the
electronics, the SU/FEEU harness and the SU core integrity.

• at ICU level: we checked that the digital control loop through the open loop response, the
data production, the command control, and the power supply were all nominal.

These operations allowed us to confirm the integrity of the instrument, and therefore to go ahead
with the mission.

4.2. Test masses release and first control

The early operations’ most critical step was the release of the test masses. Its failure would
have directly translated into the failure of the mission. Until then, test masses were safely
kept motionless by a dedicated mechanical blocking system to prevent any harm during launch.
The cylindrical masses were maintained on their top and bottom faces by finger-shaped stops
controlled by pressured force actuators. Their release was performed by delivering a specific
voltage from the power bus of the satellite, allowing the perforation of the lower stops’ valve
membrane, therefore allowing the lower stops to get retracted. The instrument was then in
its robust mode (also called “acquisition” mode) that delivers sufficient forces to displace the
masses. Then, as soon as the blocking fingers were released, the test masses were automatically
servo-controlled (“acquired”) at the centre of the electrode set. Fig. 3 shows this first release
and control of the internal test mass of the EP sensor. Within about 10 seconds and a few
oscillations, the mass was brought from its blocked position (75 µm on the sensitive X-axis
–blue curve) to the center of the electrostatic cage, where it became controlled electrostically.
The four masses were successfully released and electrostatically levitated.

Since then, MICROSCOPE has been providing acceleration and position data for the four
test masses’ six degrees of freedom. Those data are used for the science output of the mission.
The instrument is working and ready to test the Equivalence principle.

Figure 3. Release of the internal test mass of the EP sensor. The figure shows the position of
the mass along its three linear axes (blue: X, green: Y, red: Z), from being blocked to being
electrostatically controlled.
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4.3. First switch on of the drag-free system

We checked that the simultaneous and continuous drag-free operation on six degrees of freedom
is operating correctly. As the drag-free is controlled using a combination of the data provided by
the instrument itself and of the satellite’s star-tracker, it is a good indication that the instrument
works as expected.

Fig. 4 provides 24 hours of data record (from midnight to midnight) during this technical
session when the drag free system has been first started. The upper panel shows the acceleration
measured along the X-axis, and the lower panel shows the accelerations measured along the Y-
axis (blue) and Z-axis (green), as a function of time since midnight. The drag-free control is
turned on around t=25000 seconds. Before that, the X-axis acceleration oscillates at the orbital
frequency: this oscillation is due to the projection of the atmospheric drag on the X-axis (which
lies in the orbital plane). The same behavior can be noticed for the Z-axis (which lies in the
orbital plane too, and is therefore also subject to the drag). The Y-axis acceleration does not
show any sinusoidal variation (lower panel, blue curve): because the Y-axis is normal to the
orbital plane, the acceleration along it is insensitive to the drag. However, we can notice regular
dips in the acceleration; they correspond to the satellite passing through the shade (these data
have been taking during the eclipse season), when the solar radiation pressure (SRP) disappears.
This shows that we can easily measure the SRP. After the drag-free is turned on, those regular
patterns disappear, proving that the drag-compensation operates efficiently.

Figure 4. Measured linear accelerations along the X-axis (upper panel) and the Y- and Z-axes
(lower panel), around the time the drag compensation was first turned on.

To conclude this section, we can note the periodic pattern of acceleration “bursts” (Fig.
4). Those spikes are due to crackles of the satellite multi-layer insulator, that reacts to the
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temperature changes as the satellite goes through the shade area once per orbit, then relaxes.
As those spikes may contaminate the WEP test, we developed techniques to correct for them;
we discuss them in the next section.

5. Ground Segment, data processing and data analysis status

5.1. Ground segment presentation and status

MICROSCOPE’s ground segment operations are centered around three entities: the Command
Control Center (CCC) and the Center of Expertise for Compensation of Drag (CECT), hosted
by CNES-Toulouse, are in charge of the satellite’s operations and drag-free and attitude control
respectively, and the Science Mission Center (CMSM), hosted by ONERA-Palaiseau, is in charge
of the monitoring and operations of MICROSCOPE’s instrument, and of the data processing
and analysis. In particular, the CMSM is responsible for (1) ensuring all operational functions to
maximize the instrument’s operation, (2) day-to-day instrument management and monitoring,
(3) weekly mission performance check, (4) proposing modifications of the mission scenario to
the Science Working Group, and (5) releasing and archiving the data.

Compatibility tests between CNES and ONERA have been performed in 2015, showing that
the ground segment operation were ready. We could check this fact in real life operations since
the MICROSCOPE launch; no problem has been found. Data processing and analysis softwares
at CMSM are now routinely used to process and monitor the data on a daily basis. We are
therefore confident that we can efficiently and immediately analyze the science data.

5.2. Mission scenario

From April 2016 to August 2016, the satellite and all subsystems (in orbit or on ground) have
been tested. This acceptance phase was followed by a science acceptance phase until November
2016. During this last phase, calibration and WEP test sessions have been performed with their
nominal duration, respectively 5 to 10 orbits and 120 orbits. This phase aims at performing a
first guess on performance and at optimizing the procedures, the session’s parameters and the
ground segment data processes.

For instance, the matching of scale factors for the X axes was performed with less than
2 × 10−4 accuracy. To calibrate this parameter, the output of the drag-free accelerometer is
biased by a sine signal at a very well-known frequency. Then the drag-free control system
applies a thrust to compensate this stimulus. The accelerometer out of the drag-free loop fills
then the sine thrust: the comparison with the initial stimulus at the known frequency gives the
ration between the scale factors of the two accelerometers. Thus any common acceleration on
the satellite is rejected by this 2 × 10−4 factor once the scale factors are corrected. It is worth
noting that the difference of scale factors between the inner and outer tests masses was less than
1.5%, better than the 5% expected. Roughly the same result was obtained on the two SU.

The following step of the mission scenario is quite simple. From November 2016 to May 2017,
the next Eclipse period of the year, science sessions should be cumulated in order to reach the
best performance thanks to noise reduction with time integration.

5.3. Exorcising the curse of missing data

As mentioned in Sect. 3, a WEP violation signal can be detected as a sine wave corresponding
to the modulation of the difference in accelerations experienced by the instrument’s test-masses
as the satellite orbits the Earth. The main task of the data analysis is therefore to extract this
sine wave from the instrumental noise and to estimate its amplitude. Of foremost importance,
we expect a small amount of data to be lost (e.g. because of short mechanical crackles –see Sect.
4); as a consequence, the noise will leak from the high frequencies (where its Power Spectral
Density –PSD– increases) to the lower frequencies where the WEP violation signal is measured,
therefore hampering the signal detection and estimation.
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We investigated two ways to deal with missing data when estimating deterministic
parameters: (1) accounting for them at the parameter estimation level and (2) fill in missing
data before using ordinary parameter estimation techniques.

In Baghi et al. [15], we proposed the KARMA (Kalman-AR Model Analysis) method, a
general linear regression method able to deal with incomplete data affected by unknown colored
noise. It is based on an autoregressive (AR) fit of the noise that is used to whiten the data
through a Kalman filtering process. Hence, the algorithm constructs a good approximation of
the best linear unbiased estimator, conditionally to the AR model. This technique accounts for
missing data without filling gaps, contrary to those that we present next. However, it does not
allow us to visually correct the PSD for the leakage, making the assessment of the noise PSD
difficult.

The Modified-Expectation-Condition-Maximization (M-ECM [16]) allows us to use KARMA
results to fill in the missing data, and therefore reconstruct the full PSD. In this method, the
missing data are efficiently estimated by their conditional expectation as in universal Kriging,
based on the circulant approximation of the complete data covariance. After initialization with
an autoregessive fit of the noise, a few iterations of estimation/reconstruction steps are performed
until convergence of the regression and PSD estimates, in a way similar to the expectation-
conditional-maximization algorithm. The estimation can be performed for an arbitrary PSD
provided that it is sufficiently smooth.

Another possibility to fill in gaps is to use the inpainting algorithm [17, 18], which reconstructs
missing data with a basis functions dictionary using a sparsity prior. We showed that inpainting
allows us to recover the noise PSD and to use an ordinary least square method to look for a
WEP violation signal.

Conclusion

MICROSCOPE aims to test the Weak Equivalence Principle in space down to an accuracy of
10−15. This is two orders of magnitude better than the current constraints, and will allow us to
watch for physics beyond General Relativity. Beside this science goal, MICROSCOPE is fulfilling
a technology objective by showing that the technology is ready for extremely fine satellite
attitude control and precise drag-free system. This will be of interest for future ambitious
missions like eLISA. As of November 2016, the commissioning phase of MICROSCOPE has
shown us that MICROSCOPE is on good tracks to complete its objectives.
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