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Abstract.
We present three explicit examples of generalizations in relativistic quantum mechanics.

First of all, we discuss the generalized spin-1/2 equations for neutrinos. They have been obtained
by means of the Gersten-Sakurai method for derivations of arbitrary-spin relativistic equations.
Possible physical consequences are discussed. Next, it is easy to check that both Dirac algebraic
equation Det(p̂ − m) = 0 and Det(p̂ + m) = 0 for u− and v− 4-spinors have solutions with

p0 = ±Ep = ±
√

p2 +m2. The same is true for higher-spin equations. Meanwhile, every
book considers the equality p0 = Ep for both u− and v− spinors of the (1/2, 0) ⊕ (0, 1/2))
representation only, thus applying the Dirac-Feynman-Stueckelberg procedure for elimination
of the negative-energy solutions. The recent Ziino works (and, independently, the articles of
several others) show that the Fock space can be doubled. We re-consider this possibility on
the quantum field level for both S = 1/2 and higher spin particles. The third example is: we
postulate the non-commutativity of 4-momenta, and we derive the mass splitting in the Dirac
equation. Some applications are discussed.

1. Generalized neutrino equations

A. Gersten [1] proposed a method for derivations of massless equations of arbitrary-spin particles.
In fact, his method is related to the van der Waerden-Sakurai [2] procedure for the derivation of
the massive Dirac equation. I commented the derivation of the Maxwell equations in [3]. Then,
I showed that the method is rather ambigious, because instead of free-space Maxwell equations
one can obtain generalized S = 1 equations, which connect the antisymmetric tensor field with
additional scalar fields. The problem of physical significance of additional scalar chi-fields should
be solved, of course, by experiment.

In the present contribution we apply the van der Waerden-Sakurai-Gersten procedure to the
spin-1/2 fields. As a result we obtain equations which generalize the well-known Weyl equations.
However, these equations are known for a long time [4]. Raspini [5, 6] analized them again in
detail. I add some comments on physical contents of the generalized spin-1/2 equations.

I use the equation (4) of the Gersten paper [1a] for the two-component spinor field function:

(E2 − c2~p 2)I(2)ψ =
[

EI(2) − c~p · ~σ
] [

EI(2) + c~p · ~σ
]

ψ = 0 . (1)

The matrix I(2) is the identity matrix of order 2; ~σ is the vector composed of the Pauli matrices;
c is the light speed, E and p form the energy-momentum vector. Actually, this equation is
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the massless limit of the equation which has been presented (together with the corresponding
method of derivation of the Dirac equation) in the Sakurai book [2]. In the latter case one
should substitute m2c4 into the right-hand side of Eq. (1). However, instead of the equation
(3.25) of [2] one can define ad hoc the two-component ‘right’ field function

φR =
1

m1c
(ih̄

∂

∂x0
− ih̄σ ·∇)ψ, φL = ψ (2)

with the different mass parameter m1. In such a way we come to the system of the first-order
differential equations

(ih̄
∂

∂x0
+ ih̄σ ·∇)φR =

m2
2c

m1
φL , (3)

(ih̄
∂

∂x0
− ih̄σ ·∇)φL = m1cφR . (4)

It can be re-written in the 4-component form:

(

ih̄(∂/∂x0) ih̄σ ·∇
−ih̄σ ·∇ −ih̄(∂/∂x0)

)(

ψA

ψB

)

= (5)

=
c

2

(

(m2
2/m1 +m1) (−m2

2/m1 +m1)
(−m2

2/m1 +m1) (m2
2/m1 +m1)

)(

ψA

ψB

)

for the function Ψ = column(ψA ψB) = column(φR+φL φR−φL). The generalized equation
(5) can be written in the covariant form.

[

iγµ∂µ −
m2

2c

m1h̄

(1− γ5)
2

− m1c

h̄

(1 + γ5)

2

]

Ψ = 0 . (6)

The standard representation of γµ matrices has been used here.
If m1 = m2 we can recover the standard Dirac equation. As noted in [4b] this procedure

can be viewed as the simple change of the representation of γµ matrices. However, this is valid
unless m2 6= 0 only. Otherwise, the entries in the transformation matrix become to be singular.

Furthermore, one can either repeat a similar procedure (the modified Sakurai procedure)
starting from the massless equation (4) of [1a] or put m2 = 0 in eq. (6). The massless equation
is1

[

iγµ∂µ −
m1c

h̄

(1 + γ5)

2

]

Ψ = 0 . (7)

Then, we may have different physical consequences following from (7) comparing with those
which follow from the Weyl equation.2 The mathematical reason of such a possibility of different
massless limits is that the corresponding change of representation of γµ matrices involves mass
parameters m1 and m2 themselves.

It is interesting to note that we can also repeat this procedure for other ad hoc definition (or
for even more general definitions);

φL =
1

m3c
(ih̄

∂

∂x0
+ ih̄σ ·∇)ψ, φR = ψ . (8)

1 It is necesary to stress that the term ‘massless’ is used in the sense that pµp
µ = 0.

2 Remember that the Weyl equation is obtained as m→ 0 limit of the usual Dirac equation.
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This is due to the fact that the parity properties of the two-component spinor are undefined in
the two-component equation. The resulting equation is

[

iγµ∂µ −
m2

4c

m3h̄

(1 + γ5)

2
− m3c

h̄

(1− γ5)
2

]

Ψ̃ = 0 , (9)

which gives us yet another equation in the massless limit (m4 → 0):
[

iγµ∂µ −
m3c

h̄

(1− γ5)
2

]

Ψ̃ = 0 , (10)

differing in the sign at the γ5 term from (7).
The above procedure can be generalized to any Lorentz group representations, i. e., to any

spins. Is the physical content of the generalized S = 1/2 massless equations the same as that of
the Weyl equation? Our answer is ‘no’. The excellent discussion can be found in [4a,b]. First
of all, the theory does not have chiral invariance. Those authors call the additional parameters
as the measures of the degree of chirality. Apart of this, Tokuoka introduced the concept of the
gauge transformations (not to confuse with phase transformations) for the 4-spinor fields. He
also found some strange properties of the anti-commutation relations (see §3 in [4a]). And finally,
the equation (7) describes four states, two of which answer for the positive energy p0 = |p|, and
two others answer for the negative energy p0 = −|p|.

I just want to add the following speculations to the discussion. The operator of the chiral-

helicity η̂ = (α · p̂) (in the spinorial representation) used in [4b] does not commute, e.g., with
the Hamiltonian of the equation (7):3

[H,α · p̂]− = 2
m1c

h̄

1− γ5
2

(γ · p̂) . (11)

For the eigenstates of the chiral-helicity the system of corresponding equations can be read
(η =↑, ↓)

iγµ∂µΨη −
m1c

h̄

1 + γ5

2
Ψ−η = 0 . (12)

The conjugated eigenstates of the Hamiltonian |Ψ↑ + Ψ↓ > and |Ψ↑ − Ψ↓ > are connected,
in fact, by γ5 transformation Ψ → γ5Ψ ∼ (α · p̂)Ψ (or m1 → −m1). However, the γ5

transformation is related to the PT (t→ −t only) transformation [4b], which, in its turn, can be
interpreted as E → −E, if one accepts the Stueckelberg idea about antiparticles. We associate
|Ψ↑+Ψ↓ > with the positive-energy eigenvalue of the Hamiltonian p0 = |p| and |Ψ↑−Ψ↓ >, with
the negative-energy eigenvalue of the Hamiltonian (p0 = −|p|). Thus, the free chiral-helicity
massless eigenstates may oscillate one to another with the frequency ω = E/h̄ (as the massive
chiral-helicity eigenstates, see [7a] for details). Moreover, a special kind of interaction which is
not symmetric with respect to the chiral-helicity states (for instance, if the left chiral-helicity
eigenstates interact with the matter only) may induce changes in the oscillation frequency, like
in the Wolfenstein (MSW) formalism.

Thus, we derive the same equations as in Ref. [4] beginning with the basic equation (1).
The question is: how can these frameworks be connected with the Ryder method of derivation
of relativistic wave equations, and with the subsequent analysis of problems of the choice of
normalization and that of the choice of phase factors in the papers [7–9]? However, the conclusion
may be similar to that which was achieved before: the dynamical properties of the massless
particles (e. g., neutrinos and photons) may differ from those defined by the well-known Weyl
and Maxwell equations [10].

3 Do not confuse with the Dirac Hamiltonian.
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2. Negative energies in the Dirac equation

The recent problems of superluminal neutrinos, e. g., Ref. [11], negative mass-squared neutrinos,
various schemes of oscillations including sterile neutrinos, e. g. [12], require much attention.
The problem of the lepton mass splitting (e, µ, τ) has long history [13]. This suggests that
something missed in the foundations of relativistic quantum theories. Modifications seem to be
necessary in the Dirac sea concept, and in the even more sophisticated Stueckelberg concept of
the backward propagation in time. The Dirac sea concept is intrinsically related to the Pauli
principle. However, the Pauli principle is intrinsically connected with the Fermi statistics and
the anticommutation relations of fermions. Recently, the concept of the bi-orthonormality has
been proposed; the (anti) commutation relations and statistics are assumed to be different for
neutral particles [8].

We observe some interisting things related to the negative-energy concept. The Dirac
equation is:

[iγµ∂µ −m]Ψ(x) = 0 . (13)

At least, 3 methods of its derivation exist [2, 14, 15]:

• the Dirac one (the Hamiltonian should be linear in ∂/∂xi, and be compatible with
E2

p − p2c2 = m2c4);

• the Sakurai one (based on the equation (Ep − σ · p)(Ep + σ · p)φ = m2φ);

• the Ryder one (the relation between 2-spinors at rest is φR(0) = ±φL(0), and application
of the boosts to them).

Usually, everybody uses the following definition of the field operator [16] in the pseudo-Euclidean
metrics:

Ψ(x) =
1

(2π)3

∑

h

∫

d3p

2Ep
[uh(p)ah(p)e

−ip·x + vh(p)b
†
h(p)]e

+ip·x] , (14)

as given ab initio. After actions of the Dirac operator at
exp(∓ipµxµ) the 4-spinors ( u− and v− ) satisfy the momentum-space equations: (p̂−m)uh(p) =
0 and (p̂ + m)vh(p) = 0, respectively; the h is the polarization index. However, it is easy to
prove from the characteristic equations Det(p̂ ∓m) = (p20 − p2 −m2)2 = 0 that the solutions
should satisfy the energy-momentum relation p0 = ±Ep = ±

√

p2 +m2 in both cases.
Let me remind the general scheme of construction of the field operator, which has been

presented in [17]. In the case of the (1/2, 0)⊕ (0, 1/2) representation we have:

Ψ(x) =
1

(2π)3

∫

d4p δ(p2 −m2)e−ip·xΨ(p) =

=
1

(2π)3

∑

h

∫

d4p δ(p20 − E2
p)e

−ip·xuh(p0,p)ah(p0,p) = (15)

=
1

(2π)3

∫

d4p

2Ep
[δ(p0 − Ep) + δ(p0 + Ep)][θ(p0) + θ(−p0)]e−ip·x

×
∑

h

uh(p)ah(p) =
1

(2π)3

∑

h

∫

d4p

2Ep
[δ(p0 − Ep) + δ(p0 + Ep)]

[

θ(p0)uh(p)ah(p)e
−ip·x+

+ θ(p0)uh(−p)ah(−p)e+ip·x
]

=
1

(2π)3

∑

h

∫

d3p

2Ep
θ(p0)

[

uh(p)ah(p)|p0=Ep
e−i(Ept−p·x)+

+ uh(−p)ah(−p)|p0=Ep
e+i(Ept−p·x)

]

During the calculations above we had to represent 1 = θ(p0)+θ(−p0) in order to get positive- and
negative-frequency parts. Moreover, during these calculations we did not yet assumed, which
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equation this field operator (namely, the u− spinor) does satisfy, with negative- or positive-
mass?

In general we should transform uh(−p) to the v(p). The procedure is the following one [18].
In the Dirac case we should assume the following relation in the field operator:

∑

h

vh(p)b
†
h(p) =

∑

h

uh(−p)ah(−p) . (16)

We know that [15]4

ū(µ)(p)u(λ)(p) = +mδµλ , (17)

ū(µ)(p)u(λ)(−p) = 0 , (18)

v̄(µ)(p)v(λ)(p) = −mδµλ , (19)

v̄(µ)(p)u(λ)(p) = 0 , (20)

but we need Λ(µ)(λ)(p) = v̄(µ)(p)u(λ)(−p). By direct calculations, we find

−mb†(µ)(p) =
∑

λ

Λ(µ)(λ)(p)a(λ)(−p) . (21)

Hence, Λ(µ)(λ) = −im(σ · n)(µ)(λ), n = p/|p|, and

b†(µ)(p) = i
∑

λ

(σ · n)(µ)(λ)a(λ)(−p) . (22)

Multiplying (16) by ū(µ)(−p) we obtain

a(µ)(−p) = −i
∑

λ

(σ · n)(µ)(λ)b†(λ)(p) . (23)

The equations are self-consistent. In the (1, 0)⊕ (0, 1) representation the similar procedure leads
to somewhat different situation:

a(µ)(p) = [1− 2(S · n)2](µ)(λ)a(λ)(−p) . (24)

This signifies that in order to construct the Sankaranarayanan-Good field operator, which was

used by Ahluwalia, Johnson and Goldman [19], it satisfies [γµν∂µ∂ν − (i∂/∂t)
E m2]Ψ(x) = 0, we

need additional postulates. For instance, one can try to construct the left- and the right-hand
side of the field operator separately each other [20].

However, other ways of thinking are possible. First of all to mention, we have, in fact,
uh(Ep,p) and uh(−Ep,p), and vh(Ep,p) and vh(−Ep,p), originally, which may satisfy the
equations:5

[

Ep(±γ0)− γ · p−m
]

uh(±Ep,p) = 0 . (25)

Due to the properties U †γ0U = −γ0, U †γiU = +γi with the unitary matrix U =

(

0 −1
1 0

)

=

γ0γ5 in the Weyl basis, we have
[

Epγ
0 − γ · p−m

]

U †uh(−Ep,p) = 0 . (26)

4 (µ) and (λ) are the polazrization indices here. According to the referee advice I use parenthesis here to stress
this.
5 Remember that, as before, we can always make the substitution p→ −p in any of the integrands of (15).



6

1234567890

International Conference on Quantum Phenomena, Quantum Control and Quantum Optics  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 839 (2017) 012020  doi :10.1088/1742-6596/839/1/012020

The properties of the U− matrix are opposite to those of P †γ0P = +γ0, P †γiP = −γi with the
usual P = γ0, thus giving

[

−Epγ
0 + γ · p−m

]

Puh(−Ep,p) = − [p̂+m] ṽ?(Ep,p) = 0. While,
the relations of the spinors vh(Ep,p) = γ5uh(Ep,p) are well-known, it seems that the relations
of the v− spinors of the positive energy to u− spinors of the negative energy are frequently
forgotten, ṽ?(Ep,p) = γ0uh(−Ep,p).

Thus, unless the unitary transformations do not change the physical content, we have that
the negative-energy spinors γ5γ0u− (see (26)) satisfy the accustomed “positive-energy” Dirac
equation. We should then expect the same physical content. Their explicit forms γ5γ0u− are
different from the textbook “positive-energy” Dirac spinors. They are the following ones:6

ũ(p) =
N

√

2m(−Ep +m)









−p+ +m
−pr

p− −m
−pr









, (27)

˜̃u(p) =
N

√

2m(−Ep +m)









−pl
−p− +m
−pl

p+ −m









. (28)

Ep =
√

p2 +m2 > 0, p0 = ±Ep, p
± = E±pz, pr,l = px± ipy. Their normalization is to (−2N2).

What about the ṽ(p) = γ0u− transformed with the γ0 matrix? Are they equal to
vh(p) = γ5uh(p)? Our answer is ‘no’. Obviously, they also do not have well-known forms
of the usual v− spinors in the Weyl basis, differing by phase factors and in the signs at the mass
terms.

Next, one can prove that the matrix

P = eiθγ0 = eiθ
(

0 12×2
12×2 0

)

(29)

can be used in the parity operator as well as in the original Weyl basis. However, if we would
take the phase factor to be zero we obtain that while uh(p) have the eigenvalue +1 of the parity,
but (R = (x→ −x,p→ −p))

PRũ(p) = PRγ5γ0u(−Ep,p) = −ũ(p) , (30)

PR˜̃u(p) = PRγ5γ0u(−Ep,p) = −˜̃u(p) . (31)

Perhaps, one should choose the phase factor θ = π. Thus, we again confirmed that the relative
(particle-antiparticle) intrinsic parity has physical significance only.

Similar formulations have been presented in Refs. [21], and [22]. The group-theoretical basis
for such doubling has been given in the papers by Gelfand, Tsetlin and Sokolik [23], who first
presented the theory in the 2-dimensional representation of the inversion group in 1956 (later
called as “the Bargmann-Wightman-Wigner-type quantum field theory” in 1993). M. Markov
wrote two Dirac equations with the opposite signs at the mass term [21] long ago:

[iγµ∂µ −m] Ψ1(x) = 0 , (32)

[iγµ∂µ +m] Ψ2(x) = 0 . (33)

In fact, he studied all properties of this relativistic quantum model (while he did not know yet
the quantum field theory in 1937). Next, he added and subtracted these equations. What did

6 We use tildes because we do not yet know their polarization properties.
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he obtain?

iγµ∂µϕ(x)−mχ(x) = 0 , (34)

iγµ∂µχ(x)−mϕ(x) = 0 . (35)

Thus, ϕ and χ solutions can be presented as some superpositions of the Dirac 4-spinors u− and
v−. These equations, of course, can be identified with the equations for the Majorana-like λ−
and ρ−, which were presented in Ref. [7]:7

iγµ∂µλ
S(x)−mρA(x) = 0 , (36)

iγµ∂µρ
A(x)−mλS(x) = 0 , (37)

iγµ∂µλ
A(x) +mρS(x) = 0 , (38)

iγµ∂µρ
S(x) +mλA(x) = 0 . (39)

Neither of them can be regarded as the Dirac equation. However, they can be written in the
8-component form as follows:

[iΓµ∂µ −m] Ψ(+)
(x) = 0 , (40)

[iΓµ∂µ +m] Ψ
(−)
(x) = 0 , (41)

with

Ψ(+)(x) =

(

ρA(x)
λS(x)

)

,Ψ(−)(x) =

(

ρS(x)
λA(x)

)

, Γµ =

(

0 γµ

γµ 0

)

. (42)

It is easy to find the corresponding projection operators, and the Feynman-Stueckelberg
propagator.

You may say that all this is just related to the spin-parity basis rotation (unitary
transformations). However, in the previous papers I explained: the connection with the Dirac
spinors has been found [7, 24].8 For instance,











λS↑ (p)

λS↓ (p)

λA↑ (p)

λA↓ (p)











=
1

2









1 i −1 i
−i 1 −i −1
1 −i −1 −i
i 1 i −1

















u+1/2(p)
u−1/2(p)
v+1/2(p)
v−1/2(p)









, (43)

provided that the 4-spinors have the same physical dimension. Thus, we can see that the two
4-spinor systems are connected by the unitary transformations, and this represents itself the
rotation of the spin-parity basis. However, it is usually assumed that the λ− and ρ− spinors
describe the neutral particles, meanwhile u− and v− spinors describe the charged particles.
Kirchbach [24] found the amplitudes for neutrinoless double beta decay (00νβ) in this scheme.
It is obvious from (43) that there are some additional terms comparing with the standard
calculations of those amplitudes.

One can also re-write the above equations into the two-component forms. Thus, one obtains
the Feynman-Gell-Mann [25] equations. As Markov wrote himself, he was expecting “new
physics” from these equations.

7 Of course, the signs at the mass terms depend on, how do we associate the positive- or negative- frequency
solutions with λ and ρ.
8 I also acknowledge personal communications from D. V. Ahluwalia on these matters.
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Barut and Ziino [22] proposed yet another model. They considered γ5 operator as the operator
of the charge conjugation. Thus, the charge-conjugated Dirac equation has the different sign
comparing with the ordinary formulation:

[iγµ∂µ +m]Ψc
BZ = 0 , (44)

and the so-defined charge conjugation applies to the whole system, fermion + electromagnetic
field, e→ −e in the covariant derivative. The superpositions of the ΨBZ and Ψ

c
BZ also give us the

‘doubled Dirac equation’, as the equations for λ− and ρ− spinors. The concept of the doubling
of the Fock space has been developed in the Ziino works (cf. [23, 26]) in the framework of the
quantum field theory. In their case the self/anti-self charge conjugate states are simultaneously
the eigenstates of the chirality. Next, it is interesting to note that we have for the Majorana-like
field operators (aη(p) = bη(p)):

[

ν
ML

(xµ) + CνML †

(xµ)
]

/2 =

∫

d3p

(2π)3
1

2Ep
(45)

∑

η

[(

iΘφ∗ η
L
(pµ)

0

)

aη(p
µ)e−ip·x +

(

0
φηL(p

µ)

)

a†η(p
µ)eip·x

]

,

[

ν
ML

(xµ)− CνML †

(xµ)
]

/2 =

∫

d3p

(2π)3
1

2Ep
(46)

∑

η

[(

0
φη

L
(pµ)

)

aη(p
µ)e−ip·x +

(−iΘφ∗ η
L
(pµ)

0

)

a†η(p
µ)eip·x

]

,

which, thus, naturally lead to the Ziino-Barut scheme of massive chiral fields, Ref. [22].
Finally, I would like to mention that, in general, in the Weyl basis the γ− matrices are not

Hermitian, γµ
†
= γ0γµγ0. So, γi

†
= −γi, i = 1, 2, 3, the pseudo-Hermitian matrix. The energy-

momentum operator i∂µ is obviously Hermitian. So, the question, if the eigenvalues of the Dirac
operator iγµ∂µ (the mass, in fact) would be always real? The question of the complete system of
the eigenvectors of the non-Hermitian operator deserve careful consideration [27]. Bogoliubov
and Shirkov [17, p.55-56] used the scheme to construct the complete set of solutions of the
relativistic equations, fixing the sign of p0 = +Ep.

The main points of this Section are: there are ‘negative-energy solutions’ in that is previously
considered as ‘positive-energy solutions’ of relativistic wave equations, and vice versa. Their
explicit forms have been presented in the case of spin-1/2. Next, the relations to the previous
works have been found. For instance, the doubling of the Fock space and the corresponding
solutions of the Dirac equation obtained additional mathematical bases. Similar conclusion can
be deduced for the higher-spin equations.

3. Non-commutativity in the Dirac equation.

The non-commutativity [28, 29] exibits interesting peculiarities in the Dirac case. We analized
Sakurai-van der Waerden method of derivations of the Dirac (and higher-spins too) equation [30]:

(EI(4) +α · p+mβ)(EI(4) −α · p−mβ)Ψ(4) = 0 . (47)

Obviously, the inverse operators of the Dirac operators of the positive- and negative- masses
exist in the non-commutative case. As in the original Dirac work, we have

β2 = 1 , αiβ + βαi = 0 , αiαj + αjαi = 2δij . (48)
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For instance, their explicit forms can be chosen

αi =

(

σi 0
0 −σi

)

, β =

(

0 12×2
12×2 0

)

. (49)

We also postulate the non-commutativity relations for the components of 4-momenta:

[E,pi]− = Θ0i = θi , (50)

as usual. Therefore the equation (47) will not lead to the well-known equation E2 − p2 = m2.
Instead, we have

{

E2 − E(α · p) + (α · p)E − p2 −m2 − i(σ ⊗ I(2))[p× p]
}

Ψ(4) = 0 (51)

For the sake of simplicity, we may assume the last term to be zero. However, it may be used for
discussion of extra physical generations. Thus, we come to

{

E2 − p2 −m2 − (α · θ)
}

Ψ(4) = 0 . (52)

However, let us apply the unitary transformation. It is known [7, 31] that one can9

U1(σ · a)U−11 = σ3|a| . (53)

For α matrices we re-write (53) to

U1(α · θ)U−11 = |θ|









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1









= α3|θ| . (54)

The explicit form of the U1 matrix is (ar,l = a1 ± ia2, a = |a|):

U1 =
1

√

2a(a+ a3)

(

a+ a3 al
−ar a+ a3

)

=
1

√

2a(a+ a3)

× [a+ a3 + iσ2a1 − iσ1a2] ,

U1 =

(

U1 0
0 U1

)

. (55)

Let us apply the second unitary transformation:

U2α3U†2 =









1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0









α3









1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0









=









1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1









. (56)

The final equation is
[E2 − p2 −m2 − γ5chiral|θ|]Ψ′(4) = 0 . (57)

In the physical sense this implies the mass splitting for a Dirac particle over the non-commutative
space, m1,2 = ±

√
m2 ± θ. This procedure may be attractive for explanation of the mass creation

and the mass splitting for fermions, because we can associate ∆m = |m1 − m2| to the mass
difference of electron and muon, for instance.

9 Some relations for the components of an arbitrary vector a should be assumed. Moreover, in our case θ should
not depend on E and p. Otherwise, we must take the non-commutativity [E,pi]− into account again.
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4. Conclusions

In this contribution we considered the generalized equation in the (1/2, 0) ⊕ (0, 1/2)
representation. It is different from the well-known Weyl equation in the massless limit. It
leads to different physical consequences. Next, we showed that the negative-energy solutions are
possible in the Dirac equation. Finally, we showed that the non-commutativity parameter may
give us possibility to describe fermionic mass splitting.
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