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Abstract. Supersymmetric Quantum Mechanics is commonly used to generate time
independent Hamiltonians with a desired spectrum. This technique can be generalized to
construct time dependent potentials. In this work, the harmonic oscillator and a coherent state
are taken to perform a generalized SUSY transformation in order to obtain a time dependent
anharmonic oscillator.

1. Introduction

In 1984 B. Mielnik [1] constructed with a novel technique a potential with the spectrum of the
quantum harmonic oscillator known as the Abraham-Moses potential [2]. Later this technique,
called Supersymmetric Quantum Mechanics (SUSY), was studied in more detail and generalized
in order to modify the spectrum of Hamiltonians, [3–6]. Another generalization of SUSY where
the starting point is a time dependent Schrödinger equation with a potential that could depend
on time is considered in [7] and [8]. In this article the SUSY technique is used to generate
a time dependent anharmonic oscillator departing from the harmonic oscillator. Solutions for
the new Schrödinger equation can also be obtained. The general theory is presented in Sec. 2,
introducing first the simplest case known as 1-SUSY and later an iteration known as second
order confluent SUSY transformation. In Sec. 3 the confluent technique is used to obtain the
time-dependent anharmonic oscillator. Conclusions are presented in the last section.

2. Time-dependent supersymmetry transformation

As in the time-independent case, a supersymmetry transformation can be done relating two
Schrödinger operator through an intertwining operator. In Sec. 2.1 we introduce a 1-SUSY
transformation using a first order differential operator. In Sec. 2.2 we iterate this technique to
generate new solvable potentials, this iteration will have a different restriction giving to this
second order transformation more freedom.

2.1. Time-dependent 1-SUSY transformation

The time-dependent Schrödinger equation is given by

i∂tψ + ∂xxψ − V0ψ = 0, x ∈ (x`, xr), t ∈ (−∞,∞), (1)

where the potential V0 = V0(x, t) is a real known function; x` and xr are the left and right
endpoints of the domain of the potential. In order to generate a new exactly solvable system
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consider the following intertwining relationship between two Schrödinger operators

S1L1 = L1S0, (2)

where the Schrödinger operators S0, S1, and the intertwining operator L1 are defined as

Sj = i∂t + ∂xx − Vj ; j = 0, 1; L1 = A1

(
−∂x +

ux
u

)
, (3)

where A1 = A1(t) is in principle a complex valued function but in this article it will be considered
only the case when A1 is real-valued, the function u = u(x, t) is called transformation or seed
function and ux = ∂xu(x, t). A comparison of the expansions of the left and right hand sides of
the intertwining relationship (2) after some simplifications lead us to the couple of equations

V1 = V0 + i
A1t

A1
− 2∂xx lnu, i∂xt lnu+ ∂x

(uxx
u
− V0

)
= 0, (4)

where A1t = ∂tA1(t) and uxx = ∂xxu(x, t); integration of the last equation with respect to x
simplifies the equation u needs to fulfill to

i∂tu+ uxx − V0u = 0, (5)

as in the time-independent SUSY (see [6]), the transformation function u(x, t) satisfies the
Schrödinger equation, but now the time-dependent version; moreover, no separability of u(x, t)
is assumed. Asking V1 to be a real potential, i.e. Im(V1) = 0, and using (4), a second condition
the transformation function needs to fulfill is

∂xxx ln
( u
u∗

)
= 0. (6)

Since we are restricting ourselves to the case where A1 is a real valued function, it can be
obtained as

A1 = exp

{
−i

∫ t

∂xx ln

[
u(x, s)

u∗(x, s)

]
ds

}
= exp

{
2

∫ t

Im [∂xx lnu(x, s)] ds

}
, (7)

where Im(·) stands for the imaginary part. The second expression shows explicitly that A1 is
a real function. Substituting this last expression in (4) a simplified expression for V1 can be
obtained

V1 = V0 − 2∂xx ln |u|. (8)

Note that in order to obtain a potential V1 with no more singularities than the ones already
existing in V0, it is necessary to use a transformation function u without zeros in the domain
(x`, xr) at any time.

The solutions φ of the new Schrödinger equation

i∂tφ+ ∂xxφ− V1φ = 0, x ∈ (x`, xr), t ∈ (−∞,∞), (9)

can be obtained by applying the operator L1 onto the solutions ψ of the original equation,
φ = L1ψ.

It is also important to notice that the adjoint equation of (2) give us a new intertwining
relationship

L†1S1 = S0L
†
1, where L†1 = A1

(
∂x +

u∗x
u∗

)
, (10)
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and, as can be seen from (10), the function annihilated by L†1 could also be solution of S1φ = 0.

To construct this solution φ the first step is to solve the first order differential equation L†1φ = 0
and then to ask the condition S1φ = 0, the final form of this extra solution is

φ =
1

A1u∗
. (11)

Thus, solutions of the equation S1φ = 0 can be obtained with the operator L1 as φ = L1ψ or as
given by (11).

Summarizing, given a Schrödinger equation with the set of solutions ψ satisfying the boundary
conditions (physical solutions) and a transformation function u(x, t) fulfilling (5), (6) and
u(x, t) 6= 0 for all x ∈ (x`, xr) and t ∈ (−∞,∞) a new time-dependent potential V1(x, t)
given by (8) can be generated and the solutions of the corresponding Schrödinger equation (9)
will have the form φ = L1ψ, and an extra solution can be found using (11), this is the so called
missing state.

2.2. Second-order confluent supersymmetry algorithm

The time-independent confluent SUSY transformation introduced in [9–12] can be seen as an
iteration of a 1-SUSY transformation. In the same way, an iteration can be performed for the
time-dependent situation [8]. Let us consider the intertwining relation (2) and also

S2L2 = L2S1, where Sj = i∂t + ∂xx − Vj , j = 1, 2, L2 = A2

(
−∂x +

vx
v

)
, (12)

the intermediate transformation function v(x, t) satisfies S1v = 0. If we use the function (11) as
transformation function turns out that V2 = V0, i.e. we obtain the original Schrödinger operator
as a result of the second transformation, so we need a more general solution v

v =
1

A1u∗

(
ω +

∫ x

|u(s, t)|2ds
)
, (13)

where ω is considered in this manuscript as a real constant. Now, the new potential is given by

V2 = V1 − 2∂xx ln |v| = V0 − 2∂xx ln

∣∣∣∣ω +

∫ x

|u(s, t)|2ds
∣∣∣∣ . (14)

An important remark is that every value of the constant ω defines a potential V2, for different
values different physics are modeled.

In order to produce regular potential the condition changed, we need a transformation
function u(x, t) such that

ω +

∫ x

|u(s, t)|2ds 6= 0, (15)

which means that any normalized function will satisfy this condition, but also some non-square-
integrable functions are going to fulfill this condition. The reality condition for V2 in terms of u
can be expressed as

∂xxx ln
( v
v∗

)
= 0 ⇒ ∂xxx ln

( u
u∗

)
= 0. (16)

Finally, the function A2(t) appearing in the definition of the operator L2 in (12) is

A2 = exp

{
−i

∫ t

∂xx ln

[
v(x, s)

v∗(x, s)

]
ds

}
= exp

{
−i

∫ t

∂xx ln

[
u(x, s)

u∗(x, s)

]
ds

}
. (17)
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The assumption A2 = A1 will only be considered in this manuscript, (compare eqs. (7) and
(17)).

Solutions φ of the equation S2φ = 0 where S2 is given by (12) with V2 as in (14) can be
obtained from solutions ψ of the original equation as

φ = L2L1ψ = A2
1 {∂xx − [∂x ln(uv)] ∂x + [(∂x ln v)(∂x lnu)− ∂xx lnu]}ψ (18)

and a missing state as

φ =
1

A1v∗
=

u(x, t)

ω +
∫ x |u(s, t)|2ds. (19)

With this iteration u still needs to satisfy (5) and (6) but a transformation function with zeros
can be used as long as the constant ω is such that (15) is satisfied.

3. A time-dependent anharmonic oscillator

The time-dependent Schrödinger equation for the harmonic oscillator is given by [13,14]

[
i~∂t +

~
2

2m
∂xx −

1

2
mω̃2x2

]
ψ = 0. (20)

In this example units where ~ = 1, m = 1/2 and ω̃ = 2 will be considered, then the Schrödinger
equation is

(
i∂t + ∂xx − x2

)
ψ = 0. (21)

Our initial potential V0 = x2 is a time-independent potential. Stationary solutions are well
known and are given by

ψn(x, t) =
1√

π1/22nn!
Hn(x) exp

(
−x

2

2
− iEnt

)
, where En = 2n+ 1, n = 0, 1, 2, . . . (22)

and Hn(x) are Hermite polynomials [15].
An interesting set of solutions of this equation is given by the so called coherent states, these

states are Gaussian packets that maintain their shape with time and they are characterized by
a complex number z = r exp(iθ) [16]. One of this coherent states can be used as transformation
function u in order to obtain SUSY partners of the harmonic oscillator, let u be given by

u(x, t) =
1

π1/4
exp

{
−i t− [x− r cos(2t)]2

2
+ i

r2 cos(2t) sin(2t)

2
− i r x sin(2t)

}
(23)

where for simplicity a parameter z = r with r ∈ R is used. This election of the phase of z
does not affect the generality of the results since they are periodic states, t = 0 is selected
when θ = 0. This transformation function satisfies the reality condition (6) and it is never and
nowhere equal to zero. If we try to use u as given by (23) to generate new potentials with a
first-order transformation we will obtain

V1 = x2 − ∂xx ln |u|2 = V0 + 2, (24)

i.e., after the first order transformation we obtain a displaced version of the harmonic oscillator,
this property is known in the time-independent SUSY as shape invariance and it allows to
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generate the solutions of the Schrödinger equation for the original potential with algebraic
methods [3].

To obtain new potentials using the transformation function u we can employ the second-order
confluent SUSY algorithm developed in section 2. Using the equation (14) the time-dependent
SUSY partners of the harmonic oscillator are

V2 = x2 − ∂xx ln
∣∣∣∣ω +

1

π1/2

∫ x

−∞

exp
{
− [s− r cos(2t)]2

}
ds

∣∣∣∣
2

(25)

Note that when t = (2m+1)π/4 withm = 0, 1, 2, . . . the generated potential V2 correspond to a
Abraham-Moses potential [2], rediscovered and obtained with a first-order SUSY transformation
by Mielnik [1]. It is also important to notice that to avoid singularities in V2 the parameter ω
must be in the interval (−∞,−1] ∪ [0,∞).

In Fig. 1 the time-dependent anharmonic potential V2(x, t) given by (25) with the parameters
ω = −1.001 and r = 2 is plotted at three different times, t0 = 0, t1 = π/4, t2 = π/2. To complete
a cycle note that V2(x, 3π/2) = V2(t1). The perturbation or local minimum that can be seen
in V2(x, t0) moves to the left until the position shown in V2(x, t2) and then travels back to its
initial position in the same time.

Figure 1. New potential V2(x, t) at three different times, the parameters are ω = −1.001 and r = 2.

To obtain solutions φ of the new Schrödinger equation S2φ = 0 where the potential V2
involved is given by (25) equation (18) can be used, and also (19). First step is to calculate A1

through (7), with the selection of u in this example we can fix A1 = 1. The function v is then
constructed with (13). Any solution of the Harmonic Oscillator can be mapped, for example
the ground state ψ0 will be mapped to a function φ0

φ0 =
1

π3/4
r exp

(
−x

2

2
− 3it

){
2 exp(−[x− r cos(2t)]2)

erf(x− r cos(2t)) + 2ω + 1
+
√
π (2x− r exp(2it))

}
, (26)

where, erf(·) is the error function [15]. On the left of figure 2 it can be seen the plot of the
probabilities densities |φ0(x, t)|2 at t0 (blue curve), t1 (purple curve) and t2 (yellow curve). The
missing state can be obtained using (19):

φ =
exp

{
−i t− [x−r cos(2t)]2

2 + i r2 cos(2t) sin(2t)
2 − i r x sin(2t)

}

π1/4
{
1
2 [erf(x− r cos(2t)) + 1] + ω

} . (27)

On the right of Fig. 2 the probability density of the missing state (27) at t0 (blue curve), t1
(purple curve) and t2 (yellow curve) are shown.
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Figure 2. Probabilities densities of φ0(x, t) (left) and the missing state φ(x, t) (right) at t = 0 (blue curve),
t = π/4 (purple curve) and t = π/2 (yellow curve). The parameters are ω = −1.001 and r = 2.

4. Conclusions

A time-dependent anharmonic oscillator was constructed using a generalized supersymmetry
transformation, in particular it was shown that application of the simplest version of SUSY is
not enough to generate a new potential from the traditional harmonic oscillator when a coherent
state is used as transformation function. An iteration was needed to generate this family of
potentials, we called this two-step procedure a confluent time-dependent SUSY transformation.
Solutions of the corresponding time-dependent Schrödinger equation can be generated using
any solution of the harmonic oscillator and the constructed operators L1 and L2, furthermore,
a missing state was also found.
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