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Abstract. The gate version of quantum computation exploits several quantum key resources
as superposition and entanglement to reach an outstanding performance. In the way, this theory
was constructed adopting certain supposed processes imitating classical computer gates. As for
optical as well as magnetic systems, those gates are obtained as quantum evolutions. Despite,
in certain cases they are attained as an asymptotic series of evolution effects. The current work
exploits the direct sum of the evolution operator on a non-local basis for the driven bipartite
Heisenberg-Ising model to construct a set of equivalent universal gates as straight evolutions for
this interaction. The prescriptions to get these gates are reported as well as a general procedure
to evaluate their performance.

1. Introduction

Quantum computation and quantum information are modern developments taking advantage
from the Quantum Mechanics features to propose technological applications. In their quantum
gate version, the gate construction on specific physical systems is a central aspect to develop
those applications. The requirement of entanglement as resource implies the introduction of
physical interactions between the parts of the system. This requirement introduces in the
dynamics other natural basis than computational basis, which is only natural for single and
isolated qubits. For this reason, in general, it is not easy fit the evolution into the theoretical
gate constructions inspired on the classical computational elements [1, 2]. The same is true
for more complex gates involving multiqubit systems. Thus, several attempts to define general
ways to construct gates are in order. These approaches uses unitary factorization, asymptotic
approximations, etc. [3–6]. Still the most common approach is the construction of universal sets
of gates whose composition allows to generate any other gate.

In this work, we propose and develop a set of universal gates easily constructed for bipartite
magnetic systems ruled by the anysotropic Heisenberg-Ising interaction with strengths Jk along
each direction and including driven magnetic fields Bih on each qubit i = 1, 2 in only one of the
x, y, z directions (h = 1, 2, 3):

Hh =

3
∑

k=1

Jkσ1kσ2k −B1hσ1h −B2hσ2h (1)
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this model comprises several models reported in the literature [7–13]. Their SU(4) dynamics
exhibits a block form when it is expressed on the non-local basis of Bell states [14]. As it has
been proved, the general blocks in that decomposition has the form U(2) = U(1)× SU(2):

shj
= ei∆h

+
α

(

eh
β
α
∗

−qihdhα
qi∗hdhα eh

β
α

)

= ei∆h
+
α
(

cos∆h
−
α Ihj

− i sin∆h
−
αn · Shj

)

(2)

with : eh
β
α = cos∆h

−
α + iβjh−α

sin∆h
−
α , dhα

= bh−α
sin∆h

−
α (3)

Note eh
β
α and dhα

are related with the reduced transversal strength and magnetic fields
jh−α

, bh−α
and with the Rabi frequencies involved ∆h

±
α , as they are presented in [14]. At

the same time, these parameters are finally expressed in terms of the physical parameters
t, Ji, Bk, i = 1, 2, 3; k = 1, 2. While, n = (qbh−α sin

hπ
2 , qbh−α cos

hπ
2 , βjh−α), α = (−1)h+j+1, β =

(−1)j(h+lj−kj+1), q = β(−1)h+1. h is the direction of magnetic field and j = 1, 2 a position label
for each block in the whole evolution matrix. kj , lj are the labels for its rows.

There, Ihj
and Shj

are a set of extended Pauli matrices stating a basis for each SU(2) block
j applied on definite pairs of selectable Bell states as function of h. Those matrices and their
algebra have been widely discussed in [14,15].This basis could be understood too as noise or error
basis for deviations from the evolution prescriptions (such as the traditional X,Y and Z are
noise effects in the computational basis, dephasing and flipping noise). Thus U(t) =

⊕2
j=1 shj

,

stating a semi-direct product SU(4) = U(1) × SU(2)2 for U(t) with the Bell states as general
basis for all cases h = 1, 2, 3. This dynamics mixes the selectable pairs of Bell states in a
programmed way. Thus, in this work we explode last property to show that an alternative set of
universal gates can be easily constructed. These gates operate on these subspaces defined by the
pairs of Bell states as a privileged grammar instead or alternatively to the computational basis
(through the block forms depicted there). The second section presents the Boykin et al universal
gates and the proposed alternative gates for the current systems. The third section shows the
prescriptions to generate the set of universal gates, discussing some possible issues. The fourth
section presents a general strategy to evaluate the performance for all gates proposed. Last
section states the conclusions and extensions.

2. Boykin set of universal gates and alternative gates for the Heisenberg-Ising

interactions

It has been shown that two level quantum channel processing is universal in the quantum
gate version of quantum computation [16]. In addition, a universal set of two level gates
for the computational basis was given by Boykin et al [17]: B ≡ {Sπ/8, Sπ/4, H,C

aNOTb}
(Table 1). Boykin et al gates are really universal for U(4) operations on quantum information,
independently from the basis being used. Then, their form can be used for another arbitrary basis
on two levels where quantum computation is being settled. For the Bell states basis, an analog
set of gates could be alternative to the last universal set. These gates operates on the entire
quantum information space of the bipartite system: D = {(11⊗Sπ/82)B, (11⊗Sπ/42)B, (Sπ/81⊗

12)B, (Sπ/41⊗12)B, (11⊗H2)B, (H1⊗12)B, (C
1NOT2)B, (C

2NOT1)B}. Gate subscript remarks
that those forms are written for the Bell basis. Thus, they need be considered covering the
two quantum channels simultaneously. For this reason, the graph of any gate in D comprises
always the two channels (Table 2). In particular, the classical symbol for CNOT gate appears
horizontally (as a symbolic issue) in the corresponding graphs, due to they are controlled with
respect to the quantum information states, not with respect to the single qubit states.
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Table 1. Universal set of 1 and 2 level gates for the computational basis.

Levels Gate Symbol Graph Matrix form

1-Level π
8 gate Sπ/8

(

1 0

0 eiπ/4

)

'
(

e−iπ/8
0

0 eiπ/8

)

π
4 gate Sπ/4

(

1 0

0 eiπ/2

)

'
(

e−iπ/4
0

0 eiπ/4

)

Hadamard H 1√
2

(

1 1

1 −1

)

2-Level Controlled C1NOT2

(

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

)

C2NOT1

(

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

)

This structure particularly shows how these gates operate on the quantum information being
settled in the system and not properly on the physical system. Sφ gate includes Sπ/8 and
Sπ/4 gates for the corresponding values of φ. In particular note that (H1 ⊗ 12)B works as a
translator between the computational and the Bell basis, closing the equivalence with the B
set. The relevant aspect is the simple construction of these gates for the current Hamiltonian
in this work. At the first glance, one can see the correspondence between their block structure
of D elements and the general block in (2). In the next section we state the main concrete
prescriptions for each gate.

Table 2. Alternative universal set of 2-level gates for the Bell basis.

Gate Subspaces Graph Matrix form on Bell basis

(11 ⊗ Sφ2)B 1

(

e−iφ
0 0 0

0 eiφ 0 0

0 0 e−iφ
0

0 0 0 e−iφ

)

(Sφ1 ⊗ 12)B 1

(

e−iφ
0 0 0

0 e−iφ
0 0

0 0 eiφ 0

0 0 0 eiφ

)

(11 ⊗H2)B 1 1√
2

(

1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

)

(H1 ⊗ 12)B 1 1√
2

(

1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

)

(C1NOT2)B 2

(

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

)

(C2NOT1)B 2

(

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

)

The demonstration that D is universal is trivial, which is based on the universality of B [17].
Note that due any 2-level gate G can be expressed as a product of other unitary operations in
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B: G = ΠN
i=1gi, gi ∈ B. Then, as T ≡ (H1 ⊗ 12)B is an operation fulfilling: a) T † = T , b)

T |βij〉 = |i, i⊕ j〉 , T |βi,i⊕j〉 = |i, j〉. Thus, clearly G = T (ΠN
i=1T giT )T and each T giT is some

gate expressed in Bell basis, a gate operating on two levels and then able to be expressed (at
least asymptotically [17]) as a product of elements of D: T giT = ΠM

j=1u
i
j , u

i
j ∈ D. With this,

G = T (ΠN
i=1Π

M
j=1u

i
j)T . The process of translation is shown in the Figure 1.

Figure 1. Quantum gate array showing the equivalence between a traditional circuit using the computational
basis and another using the translator gate T . Each block in the dotted boxes can be expressed in terms of
elements in D.

3. Heisenberg-Ising gate’s realization and possible issues

All last gates are achievable for the Hamiltonian being considered and its evolution matrix
reducible to the blocks (2), through the prescriptions given in the Table 3. This table contains
only the immediate prescriptions.

Table 3. Basic design parameters for the universal gates in U . There m,m
′
∈ Z.

Gate (11 ⊗ Sφ2)B (Sφ1 ⊗ 12)B (11 ⊗H2)B (H1 ⊗ 12)B (C1NOT2)B (C2NOT1)B

h 1 1 1 3 1 3

∆+
h α

2π φ π/2 π/2 π/4 π/4

∆−h α
φ 2π π/2 π/2 2mπ 2mπ

∆−h −α φ 2π π/2 π/2 π/2 + 2m′π π/2 + 2m′π

bh−α 0 - qβjh−α −qβjh−α - -

bhα 0 - qβjhα −qβjhα |bhα| → 1 |bhα| → 1

jh−α β - - - 0 0

jhα β - - - 0 0

Other - - - - m,m′ →∞ m,m′ →∞

Specific prescriptions should be still written in a more complicated way for physical
parameters t, Bh±α, Bh±α, nevertheless all them are possible and compatible. Some variations
could be possible or necessary, but last prescriptions resume the general conditions to reproduce
the universal gates set D on the Bell states. Due to the extension of these prescriptions they are
omitted here. α corresponds always to the first block j = 1. Note particularly than prescriptions
for (11 ⊗ Sφ2)B could be used to generate (Sφ1 ⊗ 12)B too when h = 1 is changed by h = 3 and
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β → −β (as for other gates). Nevertheless, we report in the Table 1 an easier implementation
for h = 1. Condition m→∞ is optional, but it has been used in the current analysis, indicating
the necessity to increase sufficiently the magnetic field on the qubits to approach the evolution
matrix asymptotically to (CaNOTb)B.

4. Error estimation strategy based on quantum fidelity

In order to round the gates proposal, an strategy to evaluate their performance should be
delivered. Thus, to set a stability degree for each element of the universal set D, we consider
the initial multipartite state (bipartite is sufficient for our purposes):

|Ψ0〉 =
⊕

k

∑

j

αk,j |ψk,j〉 (4)

which is explicitly exhibiting the direct sum structure of the Hilbert space in the current case.
Note that |ψk,j〉 is the basis being used in the representation (some arrangement of Bell states,
dependent on h in our case), with each element labeled by the block k and a label j for each
element of the pair. Under the effect of some gate on SU(4) : U =

⊕

k shk
∈ D, where shk

is the U(2) = U(1) × SU(2) block (2). Here, h is an additional label identifying different
decompositions and arrangements of |ψk,j〉 (the direction in which the control field is applied,
in our case) and k is the block number. Then, the transformed state |Ψf 〉 under the gate U is:

|Ψf 〉 = U |Ψ0〉 =
⊕

k

∑

j

αk,jshk
|ψk,j〉 . (5)

Now, we are interested in a tiny failure in the gate prescriptions, generating an alternative
effect but very near from the proposed gate, U ′ =

⊕

k s
′
hk

=
⊕

k shk
+ δshk

, where δshk
is

a tiny variation of shk
generated by the variation of some of their parameter prescriptions

p = (p1, p2, ..., pN ) (p = (t, B1h , B2h , J1, J2, J3) in our case). This gate generates on |Ψ0〉:
∣

∣Ψ′f
〉

= U ′ |Ψ0〉 = |Ψf 〉+
⊕

k

∑

j

αk,jδshk
|ψk,j〉 . (6)

Gate stability can be quantified by its fidelity [15]. Developing δshk
to second order:

δshk
≈ Dshk

+
1

2
D2shk

, D = dp · ∇p

and if ρf = |Ψf 〉 〈Ψf | , ρ
′
f =

∣

∣

∣
Ψ′f

〉〈

Ψ′f

∣

∣

∣
, then:

F2 = Tr(ρfρ
′
f ) = |1 +

∑

k,j,j′

α∗k,j′αk,j

〈

ψk,j′ |s
†
hk
δshk

|ψk,j

〉

|2 (7)

Developing the last expression using (7) and considering shk
s†hk

= 1k, it gives:

F2 = 1−
∑

k,j,j′

α∗k,j′αk,jak,j,j′ + |
∑

k,j,j′

α∗k,j′αk,jbk,j,j′ |
2 (8)

with : ak,j,j′ =
〈

ψk,j′ |Ds
†
hk
Dshk

|ψk,j

〉

, bk,j,j′ =
〈

ψk,j′ |s
†
hk
Dshk

|ψk,j

〉

last ones are simply the entries of Ds†hk
Dshk

and s†hk
Dshk

in each block. Outstandingly, F2

depends quadratically from dp, a property due to shj is unitary. This expression set a procedure
to evaluate the performance of any element in D for any state |Ψ0〉 being processed around of
their specific prescriptions given in the Table 3. This task implies evaluate exhaustively F2 for
each gate in D and any state |Ψ0〉 able to be transferred in the Hilbert space H2.
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5. Conclusions

Exact control for time independent magnetic fields has been used here to reduce the evolution
blocks to pertinent blocks to reproduce the gates D alternative to B, but other kinds of control
(optimal, non-resonant, etc.) could be introduced [10,18], whose control schemes are well known
for the SU(2) dynamics. More achievable forms for magnetic fields pulses are in order to
reproduce the proposed gates, particularly avoiding resonance effects.

Nevertheless gate fidelity has been theoretically quantified, additional concrete research is
necessary to analyze this fidelity for the current constructions when the prescriptions are slightly
modified due to the main uncontrollable factors. In particular, as time and strength of magnetic
fields are currently well controlled [19], possibly the most sensible factors in the model are
the strengths Ji for the non-local interactions in the Heisenberg-Ising model [20]. A complete
analysis based on the formula (8) for each gate is currently in progress.

This proposal is based on Bell states instead of single qubits states, which are technologically
a challenge in terms of experimental stability and coherence. Despite, this states appears as
better candidates to set a computational grammar on magnetic systems easing quantum control
and quantum gate engineering. In addition, the approach is clearly settled on the quantum
information manipulation more than in the physical systems where it lays.
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