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E-mail: ajaimes@fis.cinvestav.mx

Abstract. The resonances of one-dimensional short-range potentials defined by a cutoff are
analyzed in terms of a modification of the well known complex-scaling method. Such a
modification consists in transforming the eigenfunctions only in the zone where the potential is
identically zero. As usual, the complex-scaled Hamiltonian is non-Hermitian and the functions
that represent resonances become square-integrable. The method is illustrated by calculating
the resonances of a concrete cut-off potential.

1. Introduction

Resonances in quantum mechanics are special cases of scattering states for which the ‘capture’ of
the incident wave (projectile) by the scatterer produces delays in the scattered wave. They are
represented by solutions of the Schrödinger equation associated to complex energy eigenvalues
ε = E − iΓ/2 and satisfying purely outgoing conditions. Here E is interpreted as the binding
energy of a decaying system which is composed by the scatterer and the projectile, and τ = ~/Γ
as the corresponding life-time. In contrast with the conventional scattering wave-functions,
such a kind of solutions to the Schrödinger equation are not finite at large distances. Therefore,
some approaches have been introduced to extend the formalism of quantum theory so that the
resonance states can be defined in precise form (for detailed information see e.g. [1]). Of special
interest, the complex-scaling method is useful to transform the resonance eigenfunctions into
square-integrable functions [1–4]. The latter at the price of transforming the initial Hamiltonian
into a non-Hermitian operator.

In the present paper we analyze the resonances associated with cut-off potentials which are
defined as V (x) = v(x)Θ (ξ − |x|), with Θ the step function, and v a real-valued smooth function.
The interval [−ξ, ξ] ∈ R defines an interaction zone where the potential is not identically zero,
so that our model represents a short-range interaction centered at the origin of coordinates and
delimited by the cutoff ξ ≥ 0. As these potentials are not analytic in general, the conventional
complex-scaling method is not necessarily applicable. Therefore, we shall follow the exterior

complex scaling method [5] to transform the cut-off potentials outside the interaction zone only.
With this aim we revisit the main points of the conventional complex-scaling method in Sec. 2.
The modifications of the method addressed to study the cut-off potentials are indicated in Sec. 3
and some examples are given. In Sec. 4 we give some final remarks.
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2. Complex Scaling

Let k = kr + iki = |k|e
−iβ be the wave number defining an scattering wave with kr, ki, β ∈ R. If

0 < β < π/2 (equivalently, kr > 0 and ki < 0), then k is in the fourth quadrant of the complex
k-plane and defines a resonance with ‘complex energy’ ε = k2. Therefore, the corresponding
eigenfunctions are such that uε(x) ∼ e±i|k|x cosβe±|k|x sinβ as x→ ±∞. Using the operator

S0 = ei θ x d/dx, θ ∈ R, (1)

and the Baker-Campbell-Hausdorff formula [6] eABe−A =
{
eA, B

}
=

∑∞
n=0

1
n! {A

n, B}, one can
show that the initial Hamiltonian H is transformed into the non-Hermitian operator

S0HS
−1
0 ≡ H0

θ = −e
−2iθ d

2

dx2
+ V (xeiθ), (2)

and that the new eigenfunction is such that ũε(x → ±∞) = e±i|k|x cos (θ−β)e∓|k|x sin (θ−β).
Therefore, ũε is square-integrable whenever 0 < θ−β < π

2 [1]. In particular, for β = 0 we realize

that the scattering states are transformed as e±i|k|x → e±i|k|x cos θe∓|k|x sin θ. That is, plane waves
are transformed into exponential decreasing or increasing functions for large values of |x|. To
preserve the oscillating form of the scattering wave-functions we must make k = |k| → |k|e−iθ.
The latter induces a rotation of the positive real axis in the clockwise direction by the angle 2θ,
so that the rotated energy is complex ε = E(cos 2θ− i sin 2θ) [1]. Thus, the complex-rotation is
such that bound energy states are preserved while the resonance states are now represented by
square-integrable functions.

3. Exterior complex scaling

Following [5], we propose the transformation

x̃ =





eiθ(x+ ξ)− ξ, x ≤ −ξ

x, |x| < ξ

eiθ(x− ξ) + ξ, x ≥ ξ

(3)

The rotated variable x̃ = xeiθ is a complex-valued function of x which is continuous in R and
has a derivative with discontinuities at x = ±ξ. Let ψ(x) be a solution to the Schrödinger
equation associated with the cut-off potential V (x) = v(x)Θ (ξ − |x|). Outside the interaction
zone, it can be denoted as ψI and ψIII for x ≤ −ξ and x ≥ ξ respectively. In the interaction
zone |x| < ξ, we shall write ψII . The boundary conditions for the transformed solution ψ(x̃(x))
are as follows

ψI(x̃)|x=−ξ = ψII(x̃)|x=−ξ , ψII(x̃)|x=ξ = ψIII(x̃)|x=ξ , (4)

dψI(x̃)

dx̃

∣∣∣∣
x=−ξ

=
dψII(x̃)

dx̃

∣∣∣∣
x=−ξ

,
dψII(x̃)

dx̃

∣∣∣∣
x=ξ

=
dψIII(x̃)

dx̃

∣∣∣∣
x=ξ

. (5)

To avoid the non-differentiability of ψ(x̃) at x = ±ξ, let us introduce a twice-differentiable
function of x in the form

w(x) =





eiθ(x+ ξ)− ξ + w1(x), x ≤ −ξ

x, −ξ ≤ x ≤ ξ

eiθ(x− ξ) + ξ + w2(x), x ≥ ξ

(6)



3

1234567890

International Conference on Quantum Phenomena, Quantum Control and Quantum Optics  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 839 (2017) 012005  doi :10.1088/1742-6596/839/1/012005

where the functions w1 and w1 are as smooth as necessary and such that

lim
x→−∞

w1(x) = 0, lim
x→+∞

w2(x) = 0. (7)

Therefore
w(x)→ eiθx, as |x| → ∞. (8)

The differentiability requirements on w impose the following conditions on w1 and w2,

w1(−ξ) = w2(ξ) = 0,
dw1

dx

∣∣∣∣
x=−ξ

=
dw2

dx

∣∣∣∣
x=ξ

= 1− eiθ, (9)

d2w1

dx2

∣∣∣∣
x=−ξ

=
d2w2

dx2

∣∣∣∣
x=ξ

= 0, (10)

It can be shown that w1(x) = (1− eiθ)(x+ ξ)(1− (x+ ξ))ex+ξ and w2(x) = (1− eiθ)(x− ξ)(1+
x − ξ)e−(x−ξ) satisfy the equations (7), (9) and (10). After some straightforward calculations
one arrives at the differential operator

d2

dw2
= (1− V2(x))

d2

dx2
− V1(x)

d

dx
, (11)

where the functions

V1(x) =





w′′1
(eiθ + w′1)

3
, x ≤ −ξ,

0 , |x| < ξ,
w′′2

(eiθ + w′2)
3
, x ≥ ξ,

V2(x) =





1−
1

(eiθ + w′1)
2
, x ≤ −ξ

0 , |x| < ξ

1−
1

(eiθ + w′2)
2
, x ≥ ξ

(12)

are continuos in R since w is twice differentiable. Then, the complex-scaled Hamiltonian can be
written as

Hθ = −
d2

dw2
+ V (w) = −

d2

dx2
+ V2(x)

d2

dx2
+ V1(x)

d

dx
+ V (w(x)). (13)

Notice the kinetic– and flux–like terms defined by the position-dependent coefficients V2(x) and
V1(x), the latter respectively such that limx→±∞ V2(x) = 1 − e−iθ and limx→±∞ V1(x) = 0.
Besides, in the interaction zone, the Hamiltonians Hθ and H are identical because the
transformation leaves invariant the function v(x). In Fig 1 we show the behavior of the functions
(12) outside the interaction zone.

(a) (b)

Figure 1. (Color online) Real (dotted-blue) and imaginary (continuous-red) parts of the functions V1 (a) and
V2 (b) defined in (12) for θ = 1. Notice that both functions are equal to zero in the interaction zone [−ξ, ξ].
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3.1. Examples

To obtain the transformed resonances of concrete problems, given a Hamiltonian, we only have
to substitute the function (6) in the corresponding eigenfunction. For instance, consider the
semi-harmonic barrier Vb defined by

Vb(x) =





v2, x ∈ (−ξ,−b),

x2, x ∈ (−b, b),

v1, x ∈ (b, ξ),

0, otherwise,

(14)

where b, v1, v2 > 0 [7]. The behavior of the new complex-valued potential is defined by the
combination of (14) and (12), compare Figs. 1 and 2.

Figure 2. The semi-harmonic potential defined in (14).

In the panel of Fig. 3 we show the results of the exterior complex scaling for two different values
of θ. In the upper row (θ = 0.05), two poles in the fourth quadrant of complex k-plane have been
rotated up to a position which is very close to the real axis, see Fig. 3(a). The wave-function
of the resonance which is closest to the real axis is plotted in Fig. 3(b). Such a function is still
not square-integrable, see the corresponding squared modulus in Fig. 3(c). In turn, the kinetic–
and flux–like terms defined by V1 and V2 in (13) are shown in figures 3(d) and 3(e). For a
greater value of θ, namely θ = 0.77, in Fig. 3(f) we appreciate that both resonances have been
rotated to the first quadrant of the k-plane. As a result, the above described wave-function is
now square-integrable, see Figs. 3(g) and 3(h). Besides, as indicated in Figs. 3(i) and 3(j), the
kinetic– and flux–like terms are not oscillating any more and show extremal behavior in the
vicinities of x = ±ξ only.

4. Concluding remarks

We have studied the complex scaling method for cut-off potentials. We have shown that
performing the transformation outside the interval where the discontinuities of the potential lie,
the complex scaling can be done if the transformed variable is well behaved at the cut-off. We
have shown that additional terms are present in the scaled Hamiltonian which can be interpreted
as diffusion and flux terms, and that in the case of cut-off potentials they are the unique change
in the scaled Hamiltonian, so that they carry all the physical information about the complex
scaling. Our results are in agreement with those reported in e.g. [8]. The applicability of our
approach is shown with a concrete cut-off potential. The study of the physical information of
the diffusion and flux terms is part of work under progress.

Acknowledgments

The author acknowledges the funding received through a CONACyT scholarship. Fruitful
discussions with Prof. Oscar Rosas-Ortiz are appreciated.



5

1234567890

International Conference on Quantum Phenomena, Quantum Control and Quantum Optics  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 839 (2017) 012005  doi :10.1088/1742-6596/839/1/012005

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3. Results of the exterior complex-scaling method applied to the semi-harmonic barrier potential (14)
with v1 = v2 = b2, b = 1, ξ = 2, for θ = 0.05 (upper row) and θ = 0.77 (lower row). In both cases, from left to
right, the columns correspond to the poles in the complex k-plane that define the resonances, the real (dotted-
blue) and imaginary (continuous-red) parts of the wave-function belonging to the resonance which is closest to
the real axis, the corresponding squared modulus, the real (dotted-blue) and imaginary (continuous-red) parts of
the kinetic– and the flux–like terms defined by the functions V1 and V2 in (13).
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