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Abstract. In this work we consider a quantum system described by a stationary Schrodinger
equation and obtain an explicit representation for the characteristic equation of its Gamow-
Siegert eigenstates in the form of a power series of the energy parameter. This representation
is valid for both analytical or numerical calculations. We show that determining resonances
reduces to calculating the roots of a polynomial equation. The effectiveness of this approach is
demonstrated through several numerical examples.

1. Introduction

Solutions of the Schrodinger equation associated to complex energies and satisfying the purely
outgoing wave conditions are called Gamow-Siegert functions, which describe the resonance
states of quantum systems. These functions were first used in [1] for describing the spontaneous
alpha-decay of nuclei, and later Siegert [2] obtained a dispersion formula where the radioactive
states were represented by resonance terms. Let |¥) be a Gamow-Siegert function associated
to the complex energy e = F —iI'/2 (E > 0, I" > 0) and possessing the complex wave-number
k = v/2me/h, then |¥) describes states possessing an exponential decay behaviour

|<\IJ (q’ O)‘ v (Qv 7f)>|2 = e_Ft/h.

Several formalisms have been used for describing resonance states, including Darboux
(supersymmetric) transformations [3-6], rigged Hilbert spaces [7-10], the S-matrix [11], the
transfer matrix [5], the complex-scaling technique [12], and squeezing operators [13], among
others (see, e.g., [14-16] and references therein for a complete review of techniques used in
quantum mechanics for analysing resonances). On the other hand, the theory of quantum
resonances has been used for analysing leaky modes [17] in electromagnetic waveguides via
suitable analogies between quantum mechanics and electromagnetism (see, e.g., [18,19]).

In the present work we apply the spectral parameter power series method [20] (SPPS for
short) for obtaining explicitly the characteristic equation that describes the resonance states.
This characteristic equation is given by the Taylor series of an analytic function of the complex
variable A\, being A the complex energy of a quantum particle. This series can be truncated
for its numerical implementation. Then, analysing resonances reduces to determining zeros (or
approximately, polynomial roots) of the characteristic equation. This approach provides an
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effective way for addressing resonance states in Schrodinger operators with almost arbitrary
potential functions.

The outline of this work is as follows. In Section 1 we obtain a general solution to a one-
dimensional Schrodinger equation equipped with an arbitrary short range potential. In Section 2
we obtain the characteristic equation that defines the resonance states. In Section 3 we obtain a
power series representation of the characteristic equation, and use it in some numerical examples.
Finally, in Section 4 we give some concluding remarks.

2. General solution of the Schrodinger equation with a short range potential

Let us consider the differential expression

P () Vi, —00 < x < hyq,
l(u) = — e +V(z)u(x), Viz) =<K Va(z), hi <z <hs,
Vs, ho < x < 400,

in R\ {h1,hs}, corresponding to a stationary Schrédinger operator (h2 =1= 2m) in its
coordinate representation. The function V5 represents a short range potential satisfying certain
smoothness conditions. At the points of discontinuity the boundary conditions

[u (:E)]x:h- =0, [u/ (x)]x:hv =0, J=12, (1)

define the behaviour of the functions on which ¢ acts. Here the notation [f], := f (2o +0) —
f (zo — 0) represents the jump of f at the point xg.

Let us search for a general solution of the equation ¢ (¢)) = A\ in (—o0,00), where A is a
parameter corresponding to the energy of a quantum particle. If 1 and 9 are two linearly
independent solutions of the equation in (h1, hg), then the piecewise function

aleilﬂ(x*hl) + a2@7i'{1(m7h1), —o<r < hla
V(x5 A) = brabr (w3 A) + barha (w5 A) hi <z < ha, @)
crelfe@=ha) 4 eyemins(@=ha) - hy < 2 < 00

with k1 (A\) = (A — V1)1/2, k3 (A) = (\— V3)1/2, satisfies the differential equation in R\ {h, ho}.
By a1, ag, by, be, c1, co we denote arbitrary constants. Conditions (1) applied from right to left
give the constants ai, ag, b1, by in terms of c¢1, co as follows

1 1

by = — (01522 + 02512) , by = _W (61,821 4 62,811) : (3&)
1 1

ay = Ziny (bran1 + baa2) , ag = T (bragy + baaiaa), (3b)

where the coefficients oj, Bi; (i,j = 1,2) are defined by

aij == (=1 ik (his ) + 4 (his A) . Bij o= (—1)" ™ ikgty (ha; A) + ¥ (ha; M)

and W = W [11, 9] (z) is the Wronskian of 1, 12. Here the prime / represents the derivative
with respect to .

Consider the Schrodinger equation ¢ (¢) = A with A € R and suppose that V;,V3 € R.
Scattering states are described by bounded solutions such that A > max {Vj, V3}, while bound
states are described by solutions belonging to an appropriate functional space (e.g., the Hilbert
space L? (R)) such that A < min {V7, V3}. In this work, we are interested in the Gamow-Siegert
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states possessing complex energies. For A € C the operation (A — Vj)l/ 2 (j = 1,3) leads to two
branches defined by

9]' +27k

A=V =N =VldT T, gj=arg(A-V))  (k=0,1; j=1,3).

The appropriate selection of a branch according to the constraints of the problem defines a proper
Riemann sheet in the complex A-plane in which x; (A) (j = 1, 3) is unambiguously defined. Once
a branch is chosen, general solution (2)-(3) is well-defined provided that x; # 0.

3. Solutions satisfying purely outgoing wave conditions

Let H be an operator defined by the expression Hip := £ (1)), with domain Dom () consisting
of functions 1 satisfying continuity conditions (1), and the purely outgoing wave conditions
3 / . 3 . — 3 / . 1 . —

Ill}r_noo (¢ (23 A) + ik (23 0)) =0, Ill)r_{loo (¢ (z;\) — ikg® (z; X)) = 0. (4)
Solutions in Dom (#) of the equation Hi = A\ are constructed from general solution (2)-(3) as
follows. Asymptotic condition as x — o0 is satisfied if co = 0. The resulting solution describes
the dispersion of quantum waves generated by a source of particles to the left Qf the interaction
potential V5. The remaining constant c¢; is chosen so that the incoming wave elf1(@=h1) hag unit
amplitude, more precisely

@) 4 (g [ay) e iR @) —o0 <z < hy,
¥ (z3X) =< (Baz/a1) 1 (23 A) — (Bar/ar) 2 (z3)), hy < < ha,
(W/Eil) eiff:s(alc—hz)7 hy < 7 < o0,
~ 1 _
al = T/ﬂ (6220411 - ﬁ210412) , Qg = _T/‘il (ﬁzgagl — 6210422) .

Let R := az/a; and T := W/a; be the amplitudes of the reflected and transmitted waves,
respectively, and let R := |R|* and T := [T be the corresponding reflection and transmission
coefficients, which satisfy T (\) + R(A) = 1 for every A € C. In order to fulfil asymptotic
condition (4) as z — —oo, the term R (\) e #1(=="1) must dominate over ¢*1(@="1) for some
complex energies \,, that is, 1% = o (Re_imx) as r — —o00, A = Ay, using Landau’s notation.

This is fulfilled if

—2ik1hy (0411522 - 0412521) —0

Q22321 — 21822 '

Since e~ df1P1 £ () for every A € C, the limit is satisfied if A, € C is a zero of the equation
0(X) =0, where o (A) := a1 (X) B2z (A) — a1z (A) fa1 (). Let A\, = E,, —il', /2 (E,, > 0, T, > 0)
be a zero of p (A) = 0 such that Re [k1 (A,)] > 0 and Im [1 (A,)] < 0, (these conditions define the
correct direction in which an outgoing wave should propagate [3]) then A,, represents the complex
energy of a resonance state 1 (x; \,) =: ¥, () € Dom (H). The generalised eigenfunction v,
associated to the complex eigenvalue )\, is a Gamow-Siegert eigenstates of the Hamiltonian H.
As usual, FE, is the energy of the resonance state and I';, is the inverse of its lifetime. Note that
the zeros of o (\) = 0 coincide with the poles of the transmission amplitude

2il€1 ()\) w
a1t (A) B2 (A) — a1z (A) Ba1 (A)’

which is a meromorphic function of the complex variable A. The function ¢ can be written in
terms of 11 and vy as follows

0 (\) = (1 (ha; A) + ik (A\) Y1 (ha; X)) (05 (hos A) — ikg (A) b2 (ho; A))
— (5 (13 A) 4 iK1 (N) 2 (has N)) (97 (ha; A) — k3 (A) 91 (has M) -

lim e
A=A

T(\) =

3
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In the next section we will obtain a series representation of this formula by means of the
SPPS method [20], which is valid for a large class of interaction potentials V. It is worth
noting that no general formula exists for obtaining 11 and 12 for, say, every continuous function
Vs, thereby a numerical method should be employed (e.g., the shooting method or the WKB
method [21], [22, pp. 484-539], [23]). Numerical methods give approximations of v and )y
(see, e.g., [24, Part III], and [25] for a review of the most commonly used numerical methods
to solve ODEs), but the SPPS method gives exact solutions of Sturm-Liouville problems in the
form of uniformly convergent power series of the spectral parameter, as is shown next.

4. SPPS form of the characteristic equation for the Gamow-Siegert eigenstates

The dispersion equation g (\) = 0 for the Gamow-Siegert eigenstates is constructed from two
linearly independent solutions 1, 1¥o of Sturm-Liouville equation

—¢" () + Va (2) ¢ (2) = M) (2), hy <z < hy ()

Let 1)p be a non-vanishing particular solution of the associated homogeneous equation (i.e., when
A = 0) satisfying the regularity conditions ¢2,15 2% € € [h1, ha], then the power series [20]

Y1 (3 (@)Y (=N XER (), Yo (2 0) = o () D (=N XV (@) (6)
k=0 k=0

with X, X defined by the recursive integration procedure X(© (z) =1, X© (z) =1,
/ X (=1 (g) Y2 (s)ds, odd n, / X0 (s) 952 (s)ds, odd n,
X0 (@) =70 X0 (z) = (7)
/ X1 (s) g2 (s)ds, even n; / X0 ()42 (s)ds, even n,
X0 o
satisfy equation (5), being z¢ an arbitrary point in [hq, ho]. It is shown in [20] that series (6)
converge uniformly in [hy, ha]. Hence, differentiation term by term leads to the series

,(/}/ 1/}01/} 1 i 2k l)7 'lp/ wOw 1 i X(Qk

kl kO

Let x¢ = hy then, according to recursive procedure (7), ¥ and 1) satisfy the initial conditions

Y1 (his A) = 9o (h1), ¥y (hi; ) = g (ha) ; Yo (h1;X) =0, by (h; A) = 1/¢0 (h1) -

By choosing 1)y such that ¢ (h1) = 1 and ¢ (h1) =i (see Appendix A on the construction of
such a particular solution), the characteristic equation takes the series representation
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Remark 1. According to recursive integration procedure (7) one can see that the interaction
potential Vo is not explicitly invoked in the calculation of the formal powers XM gnd XM,
However, this information is implicitly carried on in the particular solution vg. If Y is obtained
with the SPPS method (see Appendix A), then the condition Vo € € [h1, ha] should be fulfilled.
This extends the applicability of our method to a large class of potentials.

Without losing generality, let Vi = V3 = 0, so that x7 = k3 = A =: k? € C. In this case, the
characteristic equation can be written in terms of the complex variable x as g (k) = 0, where

0(k) =i(1+4k) (5 (k) i (—k)2F XD (hy) + 3 2k x (2k) (h2)>
k=0
> 2) X!

(=)
k=0
B (5(,{) (—H)Qk X(2k) (h + i (—Ii)Zk v (2k—1) (hg)) ,
k=0

k=1

and 6 (k) == (15 (h2) —iktpg (ha)) o (h). This is the Taylor series of an analytic function g
defined in the complex k-plane. If k, is a zero of g(k) = 0 then X\, = k2 is a zero of the
characteristic equation (8). Hence, in order for A, to be a complex energy of a resonance state
it is necessary that Re(k,) > 0 and Im(k,) < 0. Numerically, the previous series should
be truncated up to a M-th term. Let op; be the truncated version of g. Then, approximate
zeros of the equation g (k) = 0 can be found from the polynomial roots of gy (k) = 0. In
other words, the calculation of resonances for a one-dimensional quantum system reduces to
calculating polynomial roots.

Next we present some numerical examples using Wolfram Mathematica. For the truncated
version gy of the characteristic equation we take M = 200. This implies calculating a finite set
of formal powers according to recursive integration procedure (7). Each integration is carried
out by segmenting the interval [hi, he] into 2000 segments on which the integrand is interpolated
by cubic splines. Exact integration is then performed on the resulting interpolated integrands.
For calculating polynomial roots we employ the instruction FindRoot, using machine precision.

Example 1. Consider a rectangular potential defined by V5 () = V) on the symmetric support
[—h, h], see Figure 1l.a. With the settings Vo = 10 and h = 1 we calculate the transmission
coefficient T (¢) on the interval ¢ € [0,80] of real energies. In Figure 1.b the transmission
coefficient shows a series of maxima corresponding to |T (e,,)| = 1. The values €, shown in Table
1 are the transparency energies of the potential V.

Example 2. With the settings of Example 1 we calculate the transmission coefficient T () in a
region 2 = {A € C: 0<Re(A) <100, —60 < Im (A) < 10} of the complex A-plane, see Figure
2. Here we observe a series of peaks corresponding to the poles of the transmission coefficient
T (M\). Some of the complex energies \,, of this quantum system are shown in Table 1.

Remark 2. Piecewise constant potentials are important since more complex potentials can be
represented in terms of them. Their simplicity can lead to closed-form characteristic equations
that can be solved graphically or using standard numerical methods (e.g., Newton method).
Other potentials can be approached by performing Darboux transformations on the solutions
corresponding to piecewise constant potentials (see, e.g., [/, 6]). In this work the analysis
begins from a non-vanishing particular solution vy associated to the potential V3, from which
we calculate a finite set of formal powers X, X (") that compose the truncated characteristic
equation opr (k) = 0, and calculate its polynomial roots. On the other hand, the transmission
coefficient, which is usually approzimated as a superposition of Breit-Wigner distributions (see,
e.g., [3,5]), here is totally characterized by its poles, which are the zeros of 0 (k) = 0.
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Figure 1. (a) Rectangular potential of Example 1. (b) Plot of the transmission coefficient.

Table 1. Some transparency energies and complex energies for the potential of Example 1.

Transparency energy €, Complex energy \,, = E,, —il',,/2
12.467401810269243 11.882874871230369 - i 1.2842071483079915
19.869815644509725 17.967206726724196 - i 4.9820599537268042

32.204502676194192 28.893263517977555 - 1 10.532816267432139
49.436758521132234 44.892105206950130 - 1 17.344759864814847
71.565365406214943 65.978437727543150 - 1 25.052640345112376
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Figure 2. (a) Peaks representing the poles of the transmission coefficient T (A) of Example 2. (b) Distribution
of complex energies in the region Q.

Example 3. In order to show the applicability of our method to a more interesting potential,
let us consider a truncated version of the modified Poschl-Teller potential, Figure 3.a,

-1
pe—D o ca<n
cosh” (x)

By setting = 3 and h = 1, the transmission coefficient T (¢) evaluated on the interval e € [0, 160]
of real energies is shown in Figure 3.b. Some transparency energies for this problem calculated
from the polynomial roots of gps (k) = 0, are shown in Table 2.

Example 4. As a continuation of Example 4 we calculate the transmission coefficient T (A) in a
region @ ={A € C: 0 <Re () < 180, —60 < Im (\) < 10} of the complex A-plane, see Figure
4. Here we observe that two complex energies (A; and Ay) are very close each other, forming a
kind of cluster. In Table 2 we observe the complex energies A, calculated for this potential and
the closeness of the two mentioned energies.
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Figure 3. (a) Poschl-Teller potential of Example 4. (b) Plot of the transmission coefficient.

Table 2. Some transparency energies and complex energies for the potential of Example 3.

n  Transparency energy €, Complex energy A\, = E,, —il',,/2

1 72.00775933091033 53.80659491247304 - i 5.796460655368762
2 85.01644361908951 54.57397005390005 - i 8.329055510961702
3 108.00016333744483 68.08250284745327 - i 8.590087191115057
4 135.00003458628376 105.04504696926546 - i 20.82541895927201
5 150.00060076698233 131.29281605305934 - i 27.47415336739937

Re (M)

Figure 4. (a) Peaks representing the poles of the transmission coefficient T (\) of Example 4. (b) Clustering
of the complex energies A\; and A2 in the region ).

5. Concluding remarks

In this work we considered a one-dimensional Schrédinger equation with a short range potential
Vo defined in a region [hq, hs], satisfying the smoothness condition V5 € € [h1, ha]. We obtained
an explicit representation of the characteristic equation for its Gamow-Siegert eigenstates in
the form of a power series of the the complex energy A. From a numerical point of view, such
series should be truncated up to some M-th term. Thus, the problem of finding the complex
energies of the Gamow-Siegert eigenstates of the Hamiltonian H reduces to calculating the zeros
of equation (8) or equivalently to finding the polynomial roots of the equation gys (k) = 0.
This constitutes an effective way of analysing the resonances of a quantum system. It is worth
mentioning that no approximation nor simplification was used for obtaining the characteristic
equation, in addition, the smoothness condition V, € % [h1, ha] allows to apply the present theory
to problems having quite arbitrary potentials. Finally, possessing such a series representation
for the characteristic equation allows us to analyse other interesting phenomena such as the
degeneration of resonances, which roughly consists in determining the multiplicity of the zeros
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of equation (8) by means of the standard techniques of complex analysis such as the argument
principle or Rouché’s theorem.

Appendix A. On the construction of the particular solution

The SPPS method can also be used for constructing a non-vanishing particular solution vy of
equation (5) for A = 0. Let 1 and 2 be two linearly independent solutions, then the solution
o = @1 + ips does not vanish in [hy, ho] since p; and @9 alternate their zeros according to
Sturm’s oscillation theorem. Let ¢y be a non-vanishing particular solution of —¢” = 0 in
(h1, ho) satisfying the conditions Va3, g062 € € |h1, ha], then the series

1 (2) == o () Y YW (), 2 () = o () Y Y (2) (A1)
k=0 k=0

with Y™ Y defined by the recursive integration procedure Y© (z) =1 and Y (z) = 1,

:L‘N xr
/ YD (5) Vo (s) ¢ (s) ds, odd m, / YD (5) odd n,
YO (z) = {700 YO (z) = {776 e
JREEICE= even . [ YR (s evenn,
. A6 p

0

satisfy equation (5) for A = 0 in [hy, he]. The point zf is an arbitrary point in [hq, hg]. In
particular, taking @9 = 1 and choosing z{, = h; simplify significantly the work. According to
the SPPS method [20], series (A.1) converge uniformly on [hi, ho], and differentiation term by
term gives an expression for the derivative ¢, that is

v (@) = i (VD (2) 4+ 37 ().

k=0

The solution ¢y thus constructed satisfies the initial conditions g (h1) = 1, ¢ (h1) = 1.
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