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Abstract. The particle count, surface and mass in an occupied space can be modeled when the 
HVAC system airflows are known, along with the particle-size distribution for outdoor air, 
internal generation rates as a function of particle size, and the efficiency as a function of 
particle size for filters present. Outdoor air particle-size distribution is rarely available, but 
measures of particle mass concentration, PM2.5 and PM10, are often available for building 
locations. Outdoor air aerosol size distributions are well modeled by sums of two or three log-
normal distributions, with essentially all mass in two larger modes. Studies have also shown 
that some mode parameters are, in general, related by simple functions. This paper shows how 
these relationships can be combined with known characteristics of PM2.5 and PM10 samplers to 
create reasonable inclusive models of outdoor air aerosol-size distributions. This information 
plus knowledge of indoor particle generation allows calculation of aerosol mass in occupied 
spaces. Estimation of parameters of aerosol modes with sizes below100 nm and measurement 
of filter efficiencies in that range are described. 

1.  Introduction 
To calculate the aerosol mass downstream of an air filter, two sets of data are needed. The first is the 
particulate mass and particle size distribution upstream of the filter. The second is the efficiency of the 
filter as a function of particle size. The range of sizes for both sets must include all sizes for which 
there is any significant quantity of particles in the upstream flow. Neither of these two data sets is easy 
to obtain if the calculation is made for a filter in a real-world building HVAC ventilation system. The 
outdoor air size distribution changes hour by hour. Even its average pattern will not be known unless 
some agency samples the air near the system intake, measures the size distribution more or less 
continuously, and publishes its data. 

The particulate concentration and size distribution inside a ventilated space depends on many 
factors. Among these are the magnitude of the ventilation flows into and out of the space, including 
recirculation flow; aerosol generation in the space; leaks into and from the space; and the existence of 
additional filters in flow paths. Some of these factors are easy to quantify, others quite difficult. For 
ambient aerosols, even the concept of “size” is ambiguous. Only a spherical aerosol particle has a 
definite, single size. Filtration behavior of cylindrical particles or agglomerates must be expressed in 
terms of “aerodynamic equivalent diameter” spheres. In addition, filter efficiency also depends on 
particle density, which can have a wide range of values. For these reasons, standardized filter 
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efficiency tests [1]-[4] make use of spherical liquid aerosols and nearly spherical solid aerosols of 
specified density. 

Similarly, studies of the distribution of ambient and indoor particle sizes generally ignore density 
variations, and accept the sizes defined by whatever principle the distribution-measuring instrument 
uses. If the distribution is measured by a differential mobility analyzer (DMA) or scanning mobility 
spectrometer (SMPS), the diameters measured are equivalent to the size measured for a spherical 
particle with a specified density and a single electron charge. Such diameters are called “mobility 
diameters”. Instruments for optical measurements of size distributions are usually calibrated in terms 
of the light scattered by spherical polystyrene latex particles; ambient particles are assigned the 
diameter of a latex particle which scatters the same amount of light. This is then called an “optical 
particle size”. If the size-measurement device is a cascade impactor, the measured mean size on each 
impactor stage is a function of particle aerodynamic drag and density. Sizes thus measured are 
expressed as “aerodynamic equivalent diameters”, usually for an assumed density of 1000 kg/m3. 

All of these instruments are widely used in studies of indoor air quality (IAQ) and outdoor air 
quality (OAQ), and to measure the local values of particle mass termed PM1, PM2.5 and PM10. The 
exact meaning of these three measures of OAQ and IAQ and the observed relations between their 
values are essential to our discussion. We define them in the next section. References [5] and [6] 
provide summaries of the operating principles of the various instruments used to monitor ambient 
aerosol concentration and obtain PM1, PM2.5 and PM10. 

Data on filter efficiency as a function of particle size is subject to less ambiguity than ambient 
particle-size distribution data, provided one is willing to accept that the results of efficiency tests by 
standard procedures are representative of the results that would be obtained with typical ambient 
aerosols. Efficiency-vs-particle size data is also likely to be more easily obtained, since all 
internationally recognized standards require such data as part of the qualification of a filter. 

However, obtaining this efficiency-vs-size data may require some persuasion of the filter 
manufacturer, for filter advertising material is almost always limited to filter "ratings". Ratings are 
single numbers which place a filter in a category, based on tests performed following the standard. 
Under EN 779:2012 [1] the rating is based on a single particle diameter, 0.4 µm. ASHRAE Standard 
52.2-2 [2] has MERV ratings, Minimum Efficiency Reporting Values. A MERV rating is the 
minimum efficiency for particles of potassium chloride measured for the clean filter and after three 
loadings of the ASHRAE standardized loading dust. ISO 16890 [3] produces three rating numbers for 
filters, ePM1, ePM2.5 and ePM10, based on calculating the particle mass removed by the filter from two 
particle-size distributions typical of urban and rural locations. The subscripted numbers represent the 
approximate upper limits of particle diameter (in µm) for the ISO calculation procedure. 

Filters do not always operate at the “rated capacity” set by the manufacturer. The efficiency of a 
filter is to some degree dependent on its flow rate. All the above-mentioned test standards ignore this 
fact, and require only that filter efficiency be measured at a single flow rate. If efficiency-vs-particle-
size data were made available for low, medium, and high operating flow rates for a filter, efficiency 
values at other flow rates throughout the tested size range could be calculated by an interpolation 
algorithm. 

The changing efficiency of a filter as it accumulates particles in actual operation is quite 
complicated, and not well defined in filtration literature. OAQ varies with season, day of the week, 
and hour of the day. Internal particle generation in many cases is time-dependent. These effects could 
be incorporated into a computer model to calculate particulate matter concentration, including its 
variation with time. In this discussion, we limit our model for particulate matter concentration to 
steady-state conditions, and accept filter efficiency as that measured at a single flow rate. 

2.  How PM1, PM2.5 and PM10 are defined and measured 
Many journal articles and websites refer to PM10 as “the mass of particles less than 10 µm diameter”. 
PM1 and PM2.5 are often similarly defined, as “…less than 2.5 µm…” and “…less than 1 µm…”. These 
definitions are only approximations. PM10 is in fact the mass concentration of particles that would be 
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Here Pin is the inlet penetration in %; PMX is 1.0 or 2.5, depending on the PMX inlet simulated; and 
d is particle diameter in micrometers. For PM1 we developed best-fit parameters for the penetration 
curve given in [10]. For PM2.5, data were taken from Figure 1 above, from Ref.[7]. 

The values for K, A, and B are as follows for the PM1 and PM2.5 inlets: 
 
 PM1: K = 0.500; A = 6.3; B = 1.0; Diameter range: all 
 PM2.5: K = 0.52453; A = 2.08; B = 0.991 Diameter range: 0.0 – 3.256 µm 
 
Equation (1) provided a rather poor fit to the PM10 inlet penetration curve. We smoothed the 

tabulated data in Ref. [8] using two polynomials, a cubic for the diameter range from 0.0 to 15 µm, 
and a parabola for the range from 15 to 16 µm, where the penetration reaches zero. These expressions 
for PM10 are: 

 Over the diameter range 0 - 15 µm: 
32 01066718.056324808.0098681081.06444.96 dddPin   (2) 

 Over the diameter range 15 - 16 µm: 

 220.23.726.593 ddPin   (3) 

For all three inlets, penetration is 100 % for d below the lower end of the lower diameter range, and 
0 % for d above the upper end of the upper range. 

One thing to be kept in mind in all analyses related to PMX values is that they are measured or 
simulated only for the specific instantaneous particle-size distribution of Total Suspended Particulates 
(TSP) present, or its average over the sampling period. One should never speak of “a PM2.5 dust” or 
“the PM10 efficiency of a filter” as values unconnected to the aerosol size distribution in the air of 
concern. 

3.  Particulate effects 
HVAC systems designers are often faced with the problem of predicting the indoor air quality (IAQ) 
in buildings. The impetus for this is often the health of occupants, but it may be the effect of pollutants 
on materials or objects in the ventilated spaces [11]. In this discussion, we are concerned only with 
particulate pollution.  

Many studies have been made of the impact of particulate pollution on human health. Indeed, 
concerns about outdoor pollution led to the establishment of PM-monitoring networks, and regulations 
based on PM data. The size-dependent toxicity of particles gave rise to the concepts of PM1, PM2.5 and 
PM10. Many epidemiological studies provide correlations between PM1, PM2.5 and PM10 values and 
health effects.  

Since humans spend much of their lives indoors, it is important to be able to determine the PMX 
levels that would be measured by a PMX sampler inside an occupied, ventilated space. This calculation 
might include the pattern of blower-driven flows for the spaces, leakages into and from the spaces, 
internal particle generation, particle deposition, air exchange between spaces, and the effects of filters 
in the system.  

Characteristics of various system types are described in Refs. [12] through [15], and Ref. [13] and 
[16] provide equations for duct system design, including data on pressure drop in air distribution 
elements such as duct elbows. To calculate the flows in all system branches we need functions for the 
pressure drop dependence on air flow volume for all system elements. Both commercial and open-
source computer program packages are available to carry out calculations of ventilation systems of 
considerable complexity. 

In this discussion, we limit ourselves to one relatively simple configuration (Figure 2) and the 
choice of parameters usable in calculating its internal PMX values. 
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        CgCCBgBBAgAA ddfyddfyddfydP 505050 ,,,,,,    (5) 

The sum of y values must always equal 1; in (5), yA + yB + yC = 1. These y-values must be specified 
for the distribution of particle count, surface, or volume, depending on the parameter studied, or the 
method used obtain the distribution. 

Equation (5) can be used for interior PMX calculations only if the density of individual particles is 
assumed to be the same throughout the entire size spectrum. This is a rather drastic simplification. The 
bulk of the mass in the PM10 mode, especially in rural locations, is often soil or sand particles with 
density about 2600 kg/m3. The carbon and organic condensate particles which dominate in the PM2.5 
and PM1 modes have densities nearer 1000 kg/m3. Computer programs can accommodate such 
differences quite easily. We will therefore assume that the particles in a mode have uniform density, 
but that the density values for the modes are not necessarily equal. This means that for mass 
calculations, the masses in each narrow size range must be calculated separately for all modes present, 
and the values summed. The steps for a single mode follow here below. 

If we take the area under the curve under the function given by (5) to represent the total number of 
particles in the aerosol sample, the number of particles present between two sizes d1 and d2 is given by 
two equations: 

 
2

lnln 12 dd
d


  (6) 

and 
    12 lnln dddPN   (7) 
With the assumption that the particles in the mode are all spheres, with density ρm, the mass 

between d1 and d2 is: 

      12

3

lnln
6

dddP
d

dm m 



  (8) 

If this little mass packet is passed through a filter with an efficiency E(d) for particles with 
diameter d, the mass Δm2(d) attributable to this mode between sizes d1 and d2 immediately 
downstream of the filter is: 

       dmdEdm  12  (9) 
where E(d) is the efficiency of the filter at size d. 
The PMX concentration downstream of the filter including all particle sizes is: 

         dPdEdddP
d

PM in
D

mX 


 1lnln
6 12

3  (10) 

Here, Pin(d) is given by Equation (1), (2) or (3), depending on which PMX is being calculated. 
Summation is performed over all D ranges. In effect, we have simulated what particles would arrive at 
the sampling filter of a PMX monitor. 

Air filter efficiency as a function of particle size is generally available, at least for one “rated” 
operating velocity, and usually for the particle size range from about 300 nm to 10 µm. Existing 
international efficiency testing standards for general ventilation filters are limited to this range, but 
instrumentation needed to extend efficiency measurement to low nanometer particle sizes is 
increasingly available in testing laboratories. Filtration theory predicts, and tests confirm, that fibrous 
filters efficiency will generally increase below 100 nm, because of diffusion effects. Nevertheless, 
manufacturers need to extend filter testing to low nanometer sizes, so that indoor concentrations of 
nanoparticles can be calculated as accurately as possible. Such calculations require numerical values 
for efficiency over the entire range of interest, i.e. also below 300 nm size. 

The European Committee for Standardization has recognized this need, and draft standards (EN 
ISO 21083-1 and -2) are being written defining test methods for measuring efficiencies on 
nanoparticles in two ranges, 20-500 nm and 3-30 nm. 
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6.  Sources of data for ventilation system parameters 

6.1.  Outdoor size distributions 
Particle size distributions outdoors have been measured and reported in numerous published papers, 
but the data are usually presented graphically, making them difficult to average or to incorporate into 
computer programs. Many distributions are presented in the cumulative, or “percentage greater than 
stated size” form, that is the integral of equation (4) from d = 0 to the stated value of d. It is possible, 
but difficult, to extract the modes from such plots. Often, the distribution data are based on 
measurements made with a cascade impactor having 4 or 5 stages. The parameters of mode 
probabilities that can be extracted from such measurements have very low accuracies. Our search for 
ambient mode data was limited to higher-resolution methods, such as the Optical Particle Counter 
(OPC), Tapered Element Oscillating Microbalance (TEOM), Differential Mobility Analyzer (DMA) 
and Scanning Mobility Particle Sizer (SMPS). Ref. [17] is a survey of these devices for measuring 
aerosol distributions. Each device has limitations on its useful size range. Table 1 gives the averaged 
modal parameters found in a group of these distribution references. The mode names shown are 
common in aerosol literature, though not very precisely defined. The last two rows of Table 1 give 
parameter values for the four modes suitable for indoor PMX calculations. 

 
Table 1. Averages of parameters measured for outdoor aerosol modes and recommended for 

simulations 
Mode: Nucleation Aitken Accumulation Coarse 

Ref. Location d50 σ d50 σ d50 σ d50 σ 
20 Finland 11.7 1.71 37.3 1.78 151 1.60 - - 
20 Finland 13.8 1.63 42.5 1.71 152 1.54 - - 
21 Central Europe - - 67.4 1.68 265 1.49 - - 
22 United States 20.0 1.60 - - 350 1.9 5000 2.2 
23 Arctic Canada - - - - 300 2.2 10000 3.1 
24 Europe - - 50.8 1.98 159 1.57 - - 
25 Pacific Ocean 21.8 1.16 36.0 1.19 155 1.18 - - 
26 Many 14.2 - 64.0 - 269 - - - 
27 Beijing - - - - 305 1.67 6800 2.43 

Recommended 
Values 

        

d50, σ : 15 1.50 50 1.70 230 1.60 7300 2.60 

m, kg/m3: 1380 1000 1000 2660 
 

6.2.  Outdoor PM concentrations 
The World Health Organization provides a list of annual average PM2.5 and PM10 values for 2971 cities 
world-wide [28]. The US EPA reports these data for thousands of urban and rural PM monitor sites 
[29]. Similar data is available for sites in other countries, for example [30]. There is essentially no data 
from government agencies for PM1 concentrations. We list some values appearing in air-pollution 
literature in Table 2. The ratio (PM1 / PM2.5) for this list is reasonably constant. Multiplying its average 
value (0.75) times the local PM2.5 might be used for PM1 where no measured PM1 is available. 
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Table 2. PM concentrations and PM1/PM2.5 ratios. 

Ref. Locale 
Sampling 

Season, Days 
Mean PM Values, µg/m3 

PM1       PM2.5     PM10 

Ratio, 

PM1/PM2.5 
31 urban, Vienna Austria     year    365 14.9 18.9 26.5 0.873 
31 urban, Vienna Austria     year    365 14.7 18.8 29.1 0.782 
31 suburban, Vienna Austria     year    365 17.5 21.1 31.0 0.829 
32 urban, Athens Greece     year    365 18.5 23.7 51.3 0.781 
32 urban, Athens Greece     year    365 20.1 29.3 52.2 0.686 
32 university in hills near sea, Crete     year    365 10.3 17.9 32.5 0.575 
33 urban, Taipei, Taiwan     spring  91 14.0 20.2 35.1 0.693 
33 urban, Taipei, Taiwan     winter 90 9.7 12.7 26.4 0.764 
33 urban, Taipei, Taiwan     spring  91 19.2 29.9 51.3 0.642 
33 urban, Taipei, Taiwan    autumn 92 29.5 34.4 46.0 0.858 
34 urban, Xi’an China      year    365 127.3 182.2* - 0.699 
35 urban, arid, Phoenix Arizona USA      spring   91 4.4 18.4 25.8 0.239 
35 urban, arid, Phoenix Arizona USA    summer 92 5.9 8.4 81.6 0.702 
35 urban, arid, Phoenix Arizona USA     autumn 92 9.9 14.2 57.8 0.697 
36 urban rooftop, Chengdu China     spring  91 49 56 76 0.875 
36 urban rooftop, Chengdu China    summer 92 40 43 49 0.930 
36 urban rooftop, Chengdu China     autumn 92 54 56 60 0.964 
36 urban rooftop, Chengdu China      winter 90 76 83 92 0.916 
37    urban rooftop, normal year, Delhi       winter 90 204 236 338 0.864 
37 urban rooftop, normal year, Delhi     summer 90 43 69 178 0.623 
37 urban, monsoon season, Delhi  Aug./Sept  61 37 54 132 0.685 
37 urban post-monsoon, Delhi Oct./Nov  61 337 389 548 0.866 
38  urban, highway traffic, Barcelona  July/Nov 150 17 25 38 0.680 

 

6.3.  Indoor particle generation 
Extensive studies of indoor particle generation by industrial processes, such as welding, exist. The 
generation of particles in non-industrial situations, such as offices and concert halls, has received less 
attention, because the hazards are far less.  

Aerosol generation by ink-jet and 3-D printers has been studied [39], [40], and there is abundant 
literature on the generation of particles and toxic gaseous contaminants by tobacco smoking. These 
studies have led to widespread prohibition of indoor smoking, but reference to the literature [41], may 
be necessary in some situations.  

Nanoparticle generation in buildings is studied in [42] and [43]. The particulate progeny of radon 
and thoron are peculiarly hazardous because they are radioactive 

6.4.  System flows and leakage 
The blower-driven flows QOA and QR in Figure 2 are of course determined by the heating and cooling 
loads of the space, and the number of occupants. Leakage into or out of the space or its ventilation 
ducts is dependent on the pressure differential between the space or ducts and outdoors, and can be 
measured the “blower-door” technique (Ref. [44]). Predicting leakage is difficult, but both new 
construction and remodeling usually seek to minimize leakage. Ref. [45] and [46] provide guidance on 
the effects of leakage-reduction. Ref. [47] provides actual measurements of leakage in buildings in 
several countries, with different wall constructions, where one may need to estimate leakage 
parameters for cases where no measurement of leakage is attempted. 
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7.  Conclusions 
Reasonable estimates of the total suspended particulates in ventilated spaces can be calculated, 
including the values of PM1, PM2.5 and PM10 mass concentrations that would be measured in these 
spaces by monitors designed to measure these indices outdoors. Such calculations allow evaluation of 
the impact of particle filters on the health and comfort of building occupants, and on potential damage 
to surfaces and objects in the ventilated space. 

Some of the parameters needed for the calculation are well-defined and available for specific 
locations, but some are can only be assigned typical values. The calculations are complex, and well-
organized user-friendly computer programs and databases are needed to make them useful to HVAC 
system designers. 

The effect of filter loading with particles has not been quantified, and filter efficiencies-versus 
particle size at different operating flows are not usually available. This data must be provided if the 
cost and energy impact of filters are to be calculated. 
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