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Abstract. Measures against exposure to carbon nanotubes (CNT) are necessary, especially in 
workplaces that handle nanomaterials, because adverse health effects are a concern. This study 
focuses on the dynamics of CNT released from CNT/polymer composites during the pelletizing 
process at a pilot factory. It is difficult to identify CNT and the base resin. By characterizing the 
possibility of separating CNT from the composite with a kinetic weighting coefficient, 
estimation can be carried out using a Computational Fluid Dynamics (CFD) simulation. The 
mass concentration of black carbon and the particle number concentration by diameter were 
measured using two different measurement apparatuses. The simulation results were then 
compared to the measured data. The model was verified by the correlation between the 
simulation and measured results. The model provided a strong correlation, indicating that the 
dynamics of CNT and the base resin released from the polymer composite can be simulated. It 
is expected that the model using the CFD simulation can be applied to the occupational health 
field. 

1. Introduction 
The applications of nanomaterials in various fields have vastly increased in the past decade. On the 

one hand, the small size of nanomaterials which at least in one dimension are smaller than 100 nm allows 
for new functions. On the other hand, many reports have indicated negative impacts on experimental 
animals and cells [1–4]. For example, composite materials with carbon nanotubes (CNT) are being 
produced because adding CNT to a base material to a concentration of several percentages realizes new 
functions such as conductivity. However, the health effects of CNT remain a concern. Therefore, 
measures against exposure are necessary, especially in workplaces that handle nanomaterials.  

Numerous exposure assessments in workplaces handling nanomaterials have been reported. A survey 
has been conducted in a CNT pilot factory. However, identifying and assessing the exposure of scattered 
CNT in pilot factories that deal with CNT/polymer composite resins are difficult by thermal carbon 
analysis using NIOSH 5040 [5] due to the fact that carbon is already in the air and CNT is composed of 
carbon resin materials.  

Elemental analysis using metal impurities in CNT as a marker is being attempted to identify CNT [6–
9]. At CNT/polymer composite pilot factories, CNT goes through the following process. First, CNT 
materials are repacked into smaller bags (repacking), which are fed into an extruder (feeding). Then the 
resin and CNT are extruded (extruding). After the composite resin is cooled, it is cut into pellets 
(pelletizing). During pelletizing, the cutting process has been reported to produce a momentary high 
concentration, but the specific release has yet to be resolved.  
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This study focuses on the pelletizing process. By characterizing the possibility of separating CNT from 
the base resin with a kinetic weighting coefficient, estimations can be conducted using Computational 
Fluid Dynamics (CFD) simulations. 

Measurements were conducted using a light scattering dust counter (LSDC) for area sampling of dust, 
black carbon monitoring (BCM) to measure the black carbon concentration, and an optical particle sizer 
(OPS) to measure the suspended particulate matter concentrations (size range: 0.3–10 μm). The rate of 
CNT released from the composite resin was calculated using the advection-diffusion model, revealing 
the dynamics of CNT.  
 
2. Methodology 

2.1. Sample design  
Figure 1 depicts the factory layout. During working hours, all doors are closed. To measure the airborne 

particulate matter concentrations, LSDCs (Model LD-3, SHIBATA) were placed at six different 
sampling points (No.1–6) for 25 minutes. Measurements were taken every second. The mass 
concentration conversion coefficient (K factor) was set to 0.001 mg/m3/cpm. K factor was based on  the 
reference value. Measurements taken at points No. 2, 4, and 5 were during the pelletizing process.  

In addition, the particle concentrations during each process was measured close to the processes 
(sampling points No. 7–9 in Figure 1) using an OPS (Model 3330, TSI Inc, size range 300 nm–10 μm). 
The OPS obtained the particle concentrations at a rate of 10 sec/scan. The equipment except in the fume 
hood was set at 1.1 m above the ground, which is the height of the breathing area. 

The mass concentrations of airborne CNT was measured using BCM (Model AE51, AethLabs) at 
sampling points No. 10–12 in Figure 1. The running condition of BCM was at a flow rate of 0.1 L/min 
and a time interval of 60 seconds. To compare the base line of the ambient concentration before and 
after pelletizing, this study focused on the pelletizing process. 
 

 
Figure 1. Outline of the factory showing approximate positions of the processes and mobile 
measurement locations (1–12). 

 

2.2. CFD simulation calculation conditions 
A computation mesh was created using a mesh generator. The temperature of the extruder was set 

rather high (280°C) for calculation purposes. Figure 2 shows the calculation area. 
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Figure 2. Surface mesh of the extruder and the pelletizer in the manufacturing factory. 

 
The mesh size was selected to reduce the calculation costs. However, dynamics analysis was 

simulated using 20-cm intervals (69×52×42 [cell]). In this study, the simulation was conducted using 
the free model (OpenFOAM [10]). As for the flow field, the differential equation was discretized and 
then the 3D field was decided by steady-state analysis. The fluid was assumed to be a Newtonian. The 
equations of OpenFOAM, continuity equation, Navier-Stokes equation, and energy transfer equation 
(Equation 1–3) were used. The concentration field was analyzed by time integrating the scalar transfer 
equation that does not consider interactions. In addition to the aforementioned equations, the ideal gas 
equation was also used. 

 
                              (1) 

         (2)

              (3) 

 
E is the total energy per mass, k is the thermal conductivity, and T is the absolute temperature. Here, 

the gravity term is ignored. The total energy E is the sum of the internal energy and the kinetic energy. 
The gravity buoyancy can be considered under the assumption that a hydrostatic equilibrium is possible 
using the Boussinesq approximation. The gravity term is calculated using Equation 4.  
 

                   (4) 

: basic density, : basic temperature, β: coefficient of cubic expansion.  
 
For the turbulent model in this survey, Reynolds-averaged Navier-Stoles (RANS) was used. The RANS 

model comes in various forms. To confirm the mesh quality in obtaining y+ from the wall, the most 
stable potential fluid was achieved around 100–150. Therefore, by defining the Reynolds stress using 
the eddy viscosity, the standard k-ε model modeled by the wall-law logarithmic space was selected. 
Shown below is the equation. 
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where νeff  is  the coefficient of the eddy viscosity, whereby νt is added to ν , which is the constant of the 

turbulent term.  in the equation is the mean velocity of the flow (Equation 5).  
Constants k and ε obtained from the standard k-ε model were derived from the Equations 6 and 7. K is 

the turbulent energy and ε is the energy disposal rate. Constants k and ε were obtained from the standard 
k-ε model. For the standard k-ε model, the eddy viscosity coefficient was calculated by obtaining k and 
ε when solving the two transfer equation modeled by two variables (k and ε). 
 

            (6) 

        (7) 

 
Each coefficient is defined by Launder-Spalding (1974). Cμ= 0.09, Cε1=1.44, Cε2=1.92, σk =1.0, σε = 
1.0. 
 
The initial values (k and ε) were derived from Equations 8 and 9. 
 

                 (8) 

                 (9) 

 
I is the turbulent magnitude. In this survey, the fluctuation value of 0.08, which was measured with an 

anemometer, was used as the UI value. The default value Cμ of the standard k-ε model (0.09) was used. 
Lm is the mixing-length. For the representative length L, which is the length that receives the greatest 
impact, 7% was selected. In this survey, the width of the extruder, which is the turbulent source, was 
used as the representative length.  
Using these values, the turbulent viscosity coefficient μt and turbulent heat diffusion coefficient αt were 

determined using Equations 10 and 11. In the case of air, the experimental value was around 0.9 at the 
wall boundary. In this model, the calculation was carried out with Prt＝0.85.  
 

                       (10) 

                         (11) 

 
The scalar transfer equation is as shown below (Equation 12). S is the source term.  
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In addition, the equilibrium velocity of the normal force and gravity was obtained as the terminal 
velocity to model the characteristic of the particulate matter (Equation 13).  
 

 
          

 (13) 

  
Here, dve is the equivalent volume diameter, g is the gravitational acceleration, μ is the viscosity, and χ 

is the kinetic weighting coefficient. Spherical shape is 1. CC is the Cunningham weighting factor, and is 
shown as the Knudsen number (Kn) function (Equation 14). Kn (= 2λ /d) can be represented as the rate 
between the molecular mean free path λ and the diameter d. For λ, the value adjusted to the temperature 
of the experiment condition was used. This velocity was added to u in Equation 12 in the virtual down 
direction.  
 

         (14) 

 
The diffusion coefficient D is represented by the Stokes-Einstein equation (Equation 15)  

 

                 (15) 

 
Here, k is the Boltzmann constant and T is the absolute temperature. This D was used as the constant 

D in Equation 12. For stable state conditions, the SIMPLE method was used. The provisional velocity 
was calculated by the semi-discrete scheme of the motion equation. After this, the pressure equation was 
solved from the provisional velocity. Subsequently, the velocity was updated using that pressure. This 
process was repeated until residual value was minimized.  
Table 1 shows the calculation conditions. All factory doors were closed. The internal current was 

simulated from the thermal convection produced by the Extruder.  
As previously mentioned, the pelletizing process was first conducted with a resin to investigate the 

concentration distribution. By focusing on this process and the steady flow, the concentration of CNT 
and resin released from the pelletizer were simulated. Because the operation time of the resin was 30 
minutes, the simulation of the concentration transfer was carried out for 30 minutes. For the real-time 
measurements, the measurement time of LSDC was considered and the gradient of the increasing 
function over 20 minutes from the start to before the concentration rapidly increases was compared to 
the simulation value. In addition, the correlation coefficient between measurement value and simulation 
value was obtained. 

With the CNT aspect ratio used for this process and the bulk density, two kinds of simulations were 
conducted. For an aspect ratio of 50, χ = 2.0. Using the aerodynamics diameter calculated based on the 
catalog data of CNT used in the study, χ = 3.5. These two values were used. For the resin value, 1.04 
g/m3 was used according to the physical properties, and a bulk density of 0.12 g/m3 was used for CNT.     

Considering the shape, the terminal velocity was calculated. For OPS, to match the units of the 
calculation, the number concentration was transferred to the mass concentration as 1 mg/cm3. Table 1 
shows the initial calculation conditions.  

Finally, the CNT containing rate was assumed to be 5.0%. Then, the simulation result of the CNT 
model released from the pelletizer was compared to measured value from BCM. For each material (CNT 
of shape χ = 2.0, 3.5 and resin), different simulation scenarios were prepared using nine types of 
diameters (50 nm, 100 nm, 300 nm, 500 nm, 1 μm, 2 μm, 4 μm, 7 μm, 10 μm). The simulation scenarios 
were selected based on the measurement apparatus and analytical purpose.  
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Table 1. Calculation conditions. 
 Parameter 

Calculation area 69×52×42 [grid] 

Discrete method Finite volume method 

Initial air condition (U, p) U = 0 [m/s](air velocity)   p = 0.1[Mpa] 
Initial temperature Air = 293.15[K], Extruder = 553.15 [K] 

Initial condition (k,ε) k = 0.0096, ε = 0.0003 
Turbulent kinematic velocity   νt = 0.0268 [m2/s] 

Boundary condition Uwall = 0 [m/s]   Pressure gradient = 0 
Prandtl number Prt = 0.85 

 
 
3. Results 
 
Figure 3 depicts the calculation result of the steady flow with the simple method, and shows the 

magnitude of the potential flow in the center and its vector flow. 
 

 

 

 
Figure 3. Velocity magnitude destribution of the air stream line and the temperature desutribution at the breathing 
area height. (a) Air stream line velocity and vector. (b) Temperature cross section of the breathing line.   

 
Due to thermal convection, the flow moves upwards and around the room in general. In addition, by 

measuring the temperature distribution at points 7–9 at the start of the pelletizing process, the mean 
temperature from a thermometer at a breathing height is 34.8°C, which approximately matches the 
calculated temperatures of 35.8°C, 34.3°C, and 35.4°C (Figure 4b). From these results, the mass 
advection-diffusion simulation from the pelletizer was simulated by assuming that the simulation of the 
potential flow is reasonable.  
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Next, to grasp the trend of the mass diffusion model, the simulated calculations at Points 1–9 in Figure 
1 were conducted. CNT (χ = 2.0, 3.5) and resin were generated every second from the pelletizer. To 
determine the distribution difference between each particulate matter, the distribution was calculated 
every 30 minutes. Figures 4 and 5 show the simulation results. The calculated concentration was 
normalized in order to obtain the tendency of the difference of diameters without depending on 
generating quantity of particulate matters. 
 

  

 

 
Figure 4. Distributions of the normalized 
concentration measured using the simulation 
model at the measurement points. The 
concentration is normalized using source 
concentration with the source being 1 scalar 
value by each particulate matter (a-c) which is 
generated every second from the pelletizer 
cells. 
 
(a) Resin, 
(b) CNT (χ=2.0), 
(c) CNT (χ=3.5). 
 

 

  
Figure 5. Resin normalized concentration distributions after 30 min. (a) Resin diameter is 500 nm 
and (b) Resin diameter is 10 μm. 

 
Regarding the Resin particles, some integrations of measurement points are easier for heavier 

particles, while other integrations are easier for lighter particles. However, in terms of CNT, the 
dispersion is independent of the diameter and the kinetic weighting coefficient.  
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Next, to assess the simulation model, the correlation coefficient of the time series data was obtained 
by time series data using LSDC and simulations at the measurement points. Figure 6 and Table 2 show 
the simulation results.  
 

  

 

Figure 6. Time series of the mass concentrations 
measured using LSDC and the normalized 
concentrations by diameter calculated using the 
simulation model at measurement points. The 
baseline is adjusted to zero. The right side of the y-
axis is the concentration normalized using source 
concentration with the source being 1 scalar value 
by diameter which is generated every second from 
the pelletizer cells. 
 
(a) Measurement point 2, 
(b) Measurement point 4, 
(c) Measurement point 5. 

 
As a result, at each measurement point, the time of increase in concentrations measured using LSDC, 
corresponds reasonably well with that of increase in concentrations calculated using the model. 
Moreover, gradients of the concentration curve measured at the point 4 and 5 correspond well with the 
concentrations calculated using the model.  
 
Table 2. Correlation coefficients of the LSDC concentration data and the simulation concentrations 
data. 

Measurement point Resin diameter Correlation coefficient 
2 300 nm 0.88 
4 300 nm 0.88 
5 300 nm 0.93 

 
LSDC was calibrated using stearic acid particles (diameter range: 300 nm). Table 2 shows the results 

calculated by 300 nm.  As a result, the correlation coefficients indicate that all the points show a strong 
correlation. In addition, at Point 5, which is relatively far, a particle of size 300 μm has the strongest 
correlation because of the light weight.  

Next, the correlation coefficients of the time series data were obtained by time series data using OPS 
and a simulation at points of measurement. Figure 7 and Table 3 show the simulation results.  
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The particle number concentrations measured using OPS were converted to the mass concentrations 
by the assumed density (1 g/cm3). The particles assumed to be spherical for the mass determination.  
 

  

 

Figure 7. Time series of mass concentrations 
measured using OPS and the normalized 
concentrations by diameter calculated using the 
simulation model at measurement points. The 
simulation data has Resin particle and CNT (χ = 
2.0, 3.5). The baseline is adjusted to zero. The 
right side of the y-axis is the concentration 
normalized using source concentration with the 
source being 1 scalar value which is generated 
every second from the pelletizer cells. 
(a) Measurement point 7, 
(b) Measurement point 8, 
(c) Measurement point 9. 

 
Table 3. Correlation coefficients of the OPS concentration data and the simulation concentration data. 

Measurement point Diameter Material and shape Correlation coefficient 
7 500 nm Resin 0.98 
7 500 nm CNT χ=2 0.98 
7 500 nm CNT χ=3.5 0.98 
7 2 μm Resin 0.98 
7 2 μm CNT χ=2 0.98 
7 2 μm CNT χ=3.5 0.98 
7 7 μm Resin 0.97 
7 7 μm CNT χ=2 0.98 
7 7 μm CNT χ=3.5 0.98 
8 500 nm Resin 0.85 
8 500 nm CNT χ=2 0.85 
8 500 nm CNT χ=3.5 0.85 
8 2 μm Resin 0.86 
8 2 μm CNT χ=2 0.85 
8 2 μm CNT χ=3.5 0.85 
8 7 μm Resin 0.91 
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8 7 μm CNT χ=2 0.85 
8 7 μm CNT χ=3.5 0.85 
9 500 nm Resin -0.28 
9 500 nm CNT χ=2 -0.28 
9 500 nm CNT χ=3.5 -0.28 
9 2 μm Resin 0.47 
9 2 μm CNT χ=2 0.47 
9 2 μm CNT χ=3.5 0.47 
9 7 μm Resin 0.48 
9 7 μm CNT χ=2 0.47 
9 7 μm CNT χ=3.5 0.47 

 
Point 7 around the feeder shows a stronger correlation with CNT. Point 8 around the pelletizer shows 

a stronger correlation with resin, confirming that particles with a spherical shape and higher density are 
detected. At Point 9, 500-nm particles show a negative correlation, suggesting that the influence of 
particulate matter rather than the materials released from the pellet during the pelleting process is 
detected. Spherically shaped particles with higher densities and diameters greater than 2 μm show a 
stronger correlation at Point 9. 
 
Finally, the correlation coefficient of the time series data was obtained by time series data using the 

BCM and CNT simulation data converted into 5 wt. % at measurement points. Figure 8 and Table 4 
show the simulation results.  
 

  

 

Figure 8. Time series of mass concentrations 
measured using BCM and the normalized 
concentrations by diameter calculated using the 
simulation model at measurement points. The 
baseline is adjusted to zero. The right side of the 
y-axis is the concentration normalized using 
source concentration with the source being 0.05 
scalar value which is generated every second 
from the pelletizer cells. 
 
(a) Measurement point 10, 
(b) Measurement point 11, 
(c) Measurement point 12. 
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Table 4. Correlation coefficients of the BCM concentration data and the simulation concentration 
data. 

Measurement point Diameter Shape Correlation coefficient 
10 500 nm CNT χ = 2 -0.197 
10 500 nm CNT χ = 3.5 -0.197 
10 2 μm CNT χ = 2 -0.197 
10 2 μm CNT χ = 3.5 -0.197 
10 7 μm CNT χ = 2 -0.197 
10 7 μm CNT χ = 3.5 -0.197 
11 500 nm CNT χ = 2 0.056 
11 500 nm CNT χ = 3.5 0.056 
11 2 μm CNT χ = 2 0.056 
11 2 μm CNT χ = 3.5 0.056 
11 7 μm CNT χ = 2 0.056 
11 7 μm CNT χ = 3.5 0.056 
12 500 nm CNT χ = 2 0.736 
12 500 nm CNT χ = 3.5 0.736 
12 2 μm CNT χ = 2 0.736 
12 2 μm CNT χ = 3.5 0.736 
12 7 μm CNT χ = 2 0.737 
12 7 μm CNT χ = 3.5 0.737 

 
Point 10 and 11are not correlated with CNT. However, Point 12 shows a stronger correlation with 

CNT. 
 

4. Conclusion 
By modelling CNT and resin with a kinetic weighting coefficient, the dynamics of CNT and resin 

released from the composite during the pelletizing process was verified. The higher the kinetic weighting 
coefficient was, the weaker the dependence on the diameter. Since the terminal velocity was slower, the 
particles easily floated. Comparative simulations of the diameters and materials revealed that the resin 
particles dispersed in relation to the diameter and the kinetic weighting coefficient. However, no such 
dispersion dependence existed for CNT. The times series concentrations of LSDC and the simulation 
data as well as OPS data were strongly correlated. 

The measurement points closer to the pelletizer showed a strong correlation with larger particles, 
whereas smaller particles showed the strongest correlation with measurement points at a relatively far 
distance. In contrast, BCM showed a negative correlation around the feeder and no correlation around 
the pelletizer. Since a local ventilation was used during the feeding process, it was difficult to measure 
the higher CNT concentration continuously.                

However, when extruding and pelletizing started, a sharp peak in the OPS data with a diameter below 
a few micrometers temporarily appeared. Since the BC concentration scale is smaller than the OPS 
concentration scale, BCM was considered to be more sensitive to residual dust than OPS. It was assumed 
that the simulation result and BCM data were not correlated at point 10 and point 11[11]. 

Point 12, which was relatively far from the extruder and pelletizer, showed a strong correlation with 
the simulation results. In particular, there was a stronger correlation with larger particles as well as the 
OPS data. Moreover, the maximum correlation was detected in the resin particle data. Therefore, there 
is a low probability that free and isolated CNT were released from CNT/polymer composites during the 
pelletizing process. 
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Next, the reproducibility of mass advection-diffusion modeling in the workplace was verified. The 
measured concentrations showed an increasing function, but the gradient of the curve at 800 seconds 
decreased. Our simulation model has yet to reproduce this trend. Since the peak of concentrations 
measured using OPS with a different diameter was approximately consistent in Figure 7, the aggregation 
in air was not estimated in this study. It was assumed that by extruding continuously, the real temperature 
field was separated from the temperature field obtained using steady-state analysis. Drying the 
surrounding air showed the terminal velocity of airborne particulate matter was slower than in the moist 
environment, allowing the particles to float easily. Other possible assumptions include the deposition of 
particulate matter on the factory surfaces (exhaust pipe, wall etc.) and instability of the pelletizing 
amount. To reproduce such conditions, it is necessary to model the interaction of evaporation, which 
requires a precise mesh of the factory surroundings.     

However, this study revealed that the simple model is sufficient to determine the correlation. In 
conclusion, this model can be used to simulate dispersion of particulate matter in workplaces. 
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