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Abstract. The second-order extended stability Factorized Runge-Kutta—Chebyshev (FRKC2)
explicit schemes for the integration of large systems of PDEs with diffusive terms are presented.
The schemes are simple to implement through ordered sequences of forward Euler steps with
complex stepsizes, and easily parallelised for large scale problems on distributed architectures.
Preserving 7 digits for accuracy at 16 digit precision, the schemes are theoretically capable of
maintaining internal stability for acceleration factors in excess of 6000 with respect to standard
explicit Runge-Kutta methods. The extent of the stability domain is approximately the same
as that of RKC schemes, and a third longer than in the case of RKL2 schemes. Extension of
FRKC methods to fourth-order, by both complex splitting and Butcher composition techniques,
is also discussed.

A publicly available implementation of FRKC2 schemes may be obtained from
maths.dit.ie/frkc

1. Introduction

Factorized Runge-Kutta—Chebyshev (FRKC) methods are well suited to the numerical
integration of problems where diffusion limits the efficiency of standard explicit techniques. In
general, such systems of PDEs may be presented as semi-discrete ordinary differential equations
of the form

w' = f(tv w) (1)

Here, the associated Jacobian is assumed to have negative eigenvalues lying close to the real
axis, a good approximation for many systems of interest in astrophysical contexts.

The main use of extended stability Runge-Kutta (ESRK) methods is to fill the gap between
unconditionally stable but operationally complex implicit methods, and simply implemented
explicit schemes which suffer from stability constraints for stiff problems. ESRK methods are
particularly useful for problems involving diffusion, where the work required by standard explicit
techniques goes as the inverse square of the mesh spacing, while for extended stability methods it
goes as the inverse mesh spacing. ESRK explicit schemes may be broadly divided into factorized
and recursive types.

Factorized ESRK methods are particularly straightforward to implement at second-order,
consisting solely of forward Euler steps. At orders above two, splitting methods or, alternatively,
additional finishing stages are required for nonlinear problems. First considered by [1, 2, 3],
factorized ESRK methods fell out of common usage for some time, until revived in 1996
as SuperTimeStepping [4] at first-order, and later extended to second-order applications in
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astrophysical simulations by means of Richardson extrapolation [5, 6]. DUMKA methods exist
at third- and fourth-order [7].

The perennial problem with the factorized formalism has been that, when a very large
number of stages is used, the internal amplification factors can easily drown numerical
precision. Factorized methods have, as a result, largely taken a back seat to recursive methods
which manage internal stability by mapping the three-term recurrence relations for orthogonal
polynomials to the stability polynomials [8]. Recursive methods have been developed up to
fourth-order [9, 10, 11, 12, 13, 14, 15].

In the following, a formulation of factorized methods is presented which has high internal
stability, and is more straightforward to implement than recursive methods, and demonstrates
comparable efficiency.

2. FRKC stability polynomials
Stability polynomials form the backbone of ESRK numerical schemes and encapsulate the linear
stability properties. Linearising a system of semi-discrete ODEs

w' = Aw, (2)

the FRKC stability polynomial [16] is obtained by seeking a polynomial of degree L which yields
a forward Euler scheme of order N for linear problems through its roots via

L
WE=Wo+T> afW!) wWo=w", vt =w" (3)

=1
The M-th stability polynomial of order N, with L = MN, determined via w"t! =
R]]&(T A)w™, must match the first N 41 terms in the Taylor expansion of the evolution operator

RY/(TA) =T + O(TA)NTL, (4)

Equivalently, the linear order conditions may be expressed as constraints on the derivatives of
the stability polynomial evaluated at zero:

RY™0)=1, n=1,---,N. (5)
In addition, stability requires that the polynomial is bounded according to
IRV (2)| <1 V z=TA. (6)

The objective is to determine a closed form for the polynomial such that the extent of the
stability domain along the negative real axis 3 is as great as possible.

It is shown in [16] that the FRKC stability polynomial of rank N, and degree L, is a sum of
Chebyshev polynomials of the first kind given by

N
Bii(2) = dg’ +2) dil Ci(2), (7)
k=1
where Cyps is the Chebyshev polynomial of the first kind of degree kM, and the coefficients dy,
are determined through the linear order conditions given by Equation 5. The resultant scheme
follows immediately from the roots of the polynomial, {;, with coefficients given by

_ 1 1 (8)
YT MPay 1-G

The dependency of § on L is presented in Figure 1 at second-order (N = 2). While the

optimal value for 3/L%Brio is 0.41 [17], where Brio is the conventional second order Runge—

Kutta stability limit, values of 0.330, 0.333, and 0.25 are obtained for FRKC2, RKC [8], and
RKL2 [15] respectively.

a
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Figure 1: Extent of real stability domain at second-order for FRKC2 (solid line). For large values
of stage-number L, the scheme has a stability domain which is 0.33L? times the extent of the
reference second-order Runge—Kutta scheme. Also shown are the corresponding values for RKC
(dashed line) and RKL2 (dotted line).

2.1. Damping

Along the real axis on the interior of the stability domain of the stability polynomial, there are
points which are marginally stable, as shown in Figure 2. This is remedied by introducing the
damping parameter v = vy/N via

1 L= 9
(I —v)M?ay 1—(1—2m)¢’ ®)
and again enforcing the order conditions given by Equation 5 via Newton-Raphson iteration
over the parameters y;, which consist of N distinct values, each repeated M times. As a result,
the marginally stable maxima in |R| along the real axis are scaled by ~ (1 —14) at the expense
of reducing the extent of the stability domain 3 along the real axis by approximately (1 — v).
The damping process may also be used to make the scheme applicable to problems with
small hyperbolic components, with Péclet numbers Pe S10. For the case Pe = 10, illustrated
in Figure 2, there is a 25% loss in the extent of the stability domain observed.

a; =

2.2. Internal stability

Internal instability may be caused when the product of any of the possible sub-sequences of
steps act to generate large values which drown out numerical precision. Following the idea of
Lebedev [18, 19], but with a more effective approach, the timesteps are ordered to approzimately
minimise Q, where

Q=max(Q; r(z)), 1<j<k<L, z€l[-B,0], (10)

is the maximum over the internal amplification factors defined by
k
Qjk(x) =[] 11+ axl. (11)
I=j

While the optimal value of Q is approximately L?, for the purposes of constructing a stabilization
algorithm, a practical upper bound of 10[7/2 is chosen. In order to maintain this bound, the
estimated maximum amplification factor Q is held to a minimum while [ runs from 1 to L,
where

1 L/2
Q = ||max ij7k, H Vj k . (12)
j=1 =141

1
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Figure 2: Stability domain |R(z+Iy)| = 1 for FRKC polynomial without damping (grey line) and
with sufficient damping applied for mixed hyperbolic-parabolic problems with Pe ~ 10 (black
line). The extent of the stability domain along the real axis is contracted by approximately 25%
in the latter case.

The amplification factors v;  are defined by v; y = |1+ ajzy|, where zj, € [3, 0] are L uniformly
distributed values over the reduced range 8 = (1 — nC)B3, with C = 10~%. Initially, n = 1,
however, in a limited number of cases, the process is repeated with n incremented until the
required bound is satisfied. In this work, the mean value of n for the second-order schemes was
found to be 1.5. Figure 3 shows the realised values of Q obtained via the stabilization algorithm
for second-order schemes. Preserving 7 digits for accuracy, a scheme consisting of 10* stages is
therefore theoretically viable in a numerical integration carried out to 16 digit precision.
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Figure 3: The maximum realised internal amplification factor Q as a function of L for second-
order schemes. Guidelines are at L? and 10L2.

2.8. Convexr Monotone Property

The convex monotone property (CMP), relevant to problems with spatially varying diffusion
coefficients, was recently considered by [15]. Figure 4 shows solutions obtained for a problem
describing two materials at different temperatures and with different diffusion coefficients placed
into contact. For Chebyshev polynomial-based schemes such as RKC and FRKC2, features in the
solution associated with failure to meet the CMP are evident if the schemes are forced to take
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large steps initially (Figures 4a and 4c). However, with error control implemented as discussed
in Section 3, the features do not appear (Figure 4d). The RKL2 scheme maintains the CMP
naturally (Figure 4b).
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(c) FRKC2 at t = 1.24 without error control. (d) FRKC2 at t = 1.24 with error control.

Figure 4: Heat conduction between materials of different thermal conductivity illustrating
influence of the convex monotone property (CMP) [15].

3. FRKC2 schemes

A system w’ = f(w) is assumed such that the associated Jacobian has an eigenvalue of maximum
magnitude |A|pmax. Then, given a numerical solution w™ at some time index n, L = 2M stages
W' (for I = 0, ---, L) are evaluated such that W% = w™ and a second-order accurate solution
w1 = W is obtained a time T later. The intermediate stages of the scheme are determined
via the Euler steps

WL = Wl Ta, f(WH). (13)

Error control is straightforward since a first-order solution is available at no additional cost
in function evaluations. This first-order solution W is obtained by considering only the real
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parts of a; and f(W'). Setting WO = wo,

W = W 4+ T Re(a;) Re(f(W). (14)

The error, scaled to a specified tolerance TOL, is estimated using

lerr]l =

(15)

|Wl+1 _ Wz+1|
TOL(1 + max(|W+1|, |[Wi+1])

If |lerr|| > 1, the step is rejected and retried with T' scaled by SAFE/+/||err||. Otherwise, a
predictive controller is used to determine the subsequent timestep calibrated to the required

tolerance via
el _ SAFFE ™ lerrn—1|| (16)
— \lerr ) \ T 1 lerr™|

using values of T" and |lerr| from previous timesteps. SAFE is a safety factor chosen with a
value 0.8 here. The reader is referred to [20] for further details of error control procedures.

3.1. FRKC2 public code

A freely available C implementation of the second-order FRKC2 schemes may be accessed
at maths.dit.ie/frkc. The files frkc2core.c and frkc2user.c provide the code for internal
calculations required by the FRKC2 scheme and the code specific to the particular problem
respectively. For a given value of M, up to 257, the extent of the stability domain along the
real axis, 3, and the maximum realised internal amplification factor Q (see also Figure 3) are
given on line 3M — 2 of frkc2arks.dat. The real and imaginary parts of a; are recorded on lines
3M — 2 and 3M respectively.
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Figure 5: Efficiency comparison for the two-dimensional Brusselator problem for FRKC2, ROCK2,
and RKC. (The lines for FRKC2 and ROCK2 are almost coincident.)

The default problem provided in frkc2user.c is a two-species reaction diffusion Brusselator
dv/ot = 0.02 (820/83012 + 3211/81‘22) + 1 —4v 4 wo?,

Ow /ot = 0.02 (0*w/0x1? + 0*w/0x2%) + 3v — vw, (17)
v(0, ) = 1 +sin(2rz) w(0, x) = 3 + cos(2my),
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which possesses a spectral radius of approximately 6400 for a 200 x 200 mesh. The initial state
is a perturbation of the equilibrium solution [21]which is given by v = 1, w = 3. Figure 5 shows
the number of steps required to attain a given error in the solution for FRKC2, ROCK2 [22], and
RKC. It is evident that, for a given precision, there is little difference in the number of steps
required by FRKC2 and ROCK2. At higher degrees of acceleration (fewer steps), the difference
between the three schemes is negligible.

4. FRKC4 scheme
4.1. Complex splitting
Above second-order, nonlinear order conditions are present which require additional
consideration. One approach, given a semi-linear parabolic (reaction-diffusion) equation of the
form w’ = Aw + fp(w), is to split the nonlinear part fz(w), which is typically easily integrated,
from the linear diffusion terms Aw. For orders above two, this requires complex timesteps [23, 24]
and may be prescribed in the form

ntl _ (T, BeThy 1A

w - eTks BeTka AT By (18)

Figure 6 shows the split FRKC4s scheme is competitive with ROCK4 [12]. However, in support
of the splitting approach, it may be noted that ROCK4 suffers significantly from internal stability
issues arising from the finishing stages required for the nonlinear order conditions (discussed
further in Section 4.2) which effectively limits the scheme to about 150 stages.
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Figure 6: Performance results derived from the estimated error for the Brusselator problem.
Shown are data for the fourth-order ESRK schemes FRKC4s, FRKC6s, ROCK4, and the fifth-
order implicit CVODE scheme.

4.2. Butcher composition

An alternative to complex splitting is Butcher composition. At fourth-order, as illustrated in

Table 1, L — 4 forward Euler steps are adopted from the FRKC stability polynomial with N =4

as the scheme a, and appropriate finishing stages for the scheme @ are subsequently derived.
According to a theorem of Hairer & Wanner [25], given the B-series a, b, the composite

scheme ab is determined via

_ 1 ()
att) = 5 S |2 (Yatson IT a2 (19)

=0 z€d; (1)
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C2 | a1 0
C3 aq a9 [ a1

€4 | a1 a4z a3 C3 | az1  asz2

: : : : Ca | Qa1 Qa2 Q43
¢cp |ar a2 az -+ QL5 al az as  aq

ap az az -+ a5 ap4

Table 1: FRKC4 order composition tableaux.

where rooted trees t are used to represent derivatives in Taylor series. The first summation in
Equation 19 is over all a(t) different labelings of ¢, s;(f) is the subtree formed by the first ¢
indices, and {z € d;(t)} is the difference set of subtrees formed by the remaining indices. The
eight order conditions at fourth order are then given by

aa(-) = a(-) +a(-),

aa(l) = 2a(-)a(s) + a(l) + a(y),

aa(}) = 3a(-)%a(-) + 3a(-)a() + a}) + a(),
aa(~) = 3a(-)a(l) + 3a(t)al-) + a(v) + a(\v),
aa(\v) = 4a(-)%a(-) + 6a(-)%a() + da()al) + a(v) + a(\v), (20)
aa(«}) = 4a(-)*a(t) + 4a@a()al) + (8/3)a(-)a(d) + (4/3)a(-)a(v),

+2a()a(t) + a(x}) + alJ}),

aa("y) = 6a(-)*a(t) + da(-ya(\) + 4a)a) + a(y) +a(’y),

aﬁ(i) = 4a(-)a(v) + 6a(1)a(l) + da(\v)a(-) + a(i) + 5@-

Hence, for given scheme a, imposing the required order conditions on aa yields equations for @,
which are in turn easily solved for @. The reader is referred to [25] for further details.

Figure 6 shows a comparison of the FRKC4 scheme based on composition methods with other
schemes. The reference solution is provided by a fifth-order implicit preconditioned BDF solver
from the cvODE numerical package [26]. The number of steps required for a given precision is
comparable for ROCK4 and FRKC4 and somewhat greater than the split FRKC4s scheme. This
difference may be ascribed to a loss of precision due to the accumulation of errors over the
finishing stages [27].

5. Conclusions

FRKC extended stability Runge-Kutta (ESRK) schemes are shown to well-suited to the
integration of large-scale problems governed by systems of PDEs where the explicit timescale
is constrained by diffusion. An implementation of the FRKC2 second-order schemes, publicly
available at maths.dit.ie/frkc, is presented. The fourth-order FRKC4 schemes are also
presented with nonlinear order conditions addressed via both splitting and composition methods.
These schemes are shown to be competitive with alternative ESRK methods.
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