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Abstract. Semi-convective mixing, as an example of double-diffusive convection, is of general
importance in multi-component fluid mixing processes. In astrophysics it occurs when the mean
molecular weight gradient caused by a mixture of light material on top of heavier one counteracts
the convective instability caused by a temperature gradient. Direct numerical simulations of
double-diffusive fluid flows in a realistic stellar or planetary parameter space are currently
non-feasible. Hence, a model describing incompressible semi-convection was developed, which
allows to investigate semi-convective layer formation. A detailed parameter study with varying
Rayleigh number and stability parameter has been performed for the giant planet case. We
conclude that semi-convective layering may not play that important role as suggested in earlier
works for the planetary case.

1. Introduction

Various situations are found in nature and in engineering problems where an unstably stratified
fluid column is partially stabilized by a counteracting gradient. The double-diffusive instability
(DD) belongs to these scenarios. As the name suggests, two different diffusivities are needed
to describe this instability: the diffusivity κT of a fast diffusing component, e.g. temperature
T , and the diffusivity κS of, say, a slowly diffusing solute such as salt in water or a component
of a gas with different mean molecular weight than the other component(s) of the gas (such as
helium in comparison to hydrogen in a gas mixture such as that one found in many stars). The
ratio of both diffusivities is known as the Lewis number Le and for the cases of interest here,
Le = κS/κT � 1. Apart from the diffusivities the stratification is an important component
of DD. Situations where the temperature stratification is unstable against small perturbations
and the solute stabilises the convective buoyancy force are known as the diffusive regime. In
astrophysics this case is known as semi-convection. On the other hand, if the solute is unstably
stratified and the temperature gradient is positive in the vertical direction, so-called salt-fingers

can occur. Consequently, both instabilities are determined mainly by the ratio of the thermal
and the solute Brunt-Väisälä frequenciesN2

T andN2
S . The stability ratio Rρ compares the impact

of the solute stratification on the thermal buoyancy. The diffusive regime is thereby defined as
Rρ = −N2

S/N
2
T , the salt-finger regime as Rρ = −N2

T /N
2
S . In spite of this classification the value

of Rρ related to unity is important: Rρ > 1 implies that the stratification is much more stable
than in the opposite case of Rρ < 1. In particular, the parameter space of 1 < Rρ < Le−0.5
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well mixed layers separated by sharp interfaces with large gradients of T and S. The common
challenge of modelling layered DD processes is to calculate the thermal and the solute flux over
these interfaces. The fluxes in turn are needed to calculate the effective diffusivities, which can
be used to estimate merging timescales and hence further evolutionary properties (mixing times,
overshooting) of the star. The investigated numerical model is based on a modified experimental
setup inspired by Turner [15]. The purpose of the numerical study is to investigate evolutionary
aspects of the formation of the staircases and their spatial evolution.

1.1. DD in astrophysics

The challenging stellar parameter regime of Pr,Le � 1 makes it impossible to investigate the
realistic stellar fluid flow with direct numerical simulations. Merryfield [7] performed the first
simulations for Pr = 0.1 and Le = 0.04 for a setup otherwise akin to the convective core boundary
of massive stars. He found coherent structures, but layer formation was missing, which was
explained with a too low numerical resolution. Biello [2] investigated semi-convection in the
same parameter space. He improved Merryfield’s model setup and observed layering. Bascoul
[1] found semi-convective layering for both regimes, the astrophysical one and the geophysical
one. He simulated an expanding core by applying a time-dependent flux boundary condition
at the bottom. Zaussinger et al. [16], [17] compared compressible and incompressible semi-
convection experiments and confirmed Spruit’s estimates for a parameter space accessible to
direct numerical simulation (0.01 6 Le 6 Pr 6 7 with Ra up to about 106). Kupka et al. [10]
recently published results concerning comparisons of semi-convection in oceans and in stars.
Even extrapolations from the oceanographic to the stellar parameter space have been presented.
Moll and Garaud [4] recently published a new model for double diffusive mixing, based on an
extensive series of 3D simulations. As a result a modified power law for estimating the thermal
and solute fluxes was derived. Layered semi-convection has been investigated by Chabrier and
Baraffe [3] for the giant planet case, where the Prandtl- and the Lewis number are surprisingly
high. The present study is oriented towards investigating their approximations.

2. Governing Equations

The double-diffusive system is described by four non-linear equations for the incompressible case.
The scaled set of equations are based on the Boussinesq approximation, where the underlying
equations are the mass conservation, the Navier-Stokes equation, the solute equation and the
temperature equation. The density is assumed to be constant, apart from the buoyancy term.
This approximation is justified since we consider small layers (in terms of the vertical extent),
moderate flow speeds (compared to the sound speed) and small fluctuations of the dynamical
variables around their (constant) background state.

∇ · ~u = 0

D ũ

D t
= − 1

ρ0
∇p+ ν∆~u+ ρ~g

DT

Dt
= κT∆T

DS

D t
= κS∆S

(1)

is characterized by layering processes which lead to so-called staircases. These staircases are
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Here we use the subsequent scaling denoted by ∗, which follows the idea that semi-convective
processes happens on the thermal time scale,

t = t∗ · H2

κT

u = u∗ · κT

H

p = p∗ · ρ0κT ν
H2

T = T0 +∆TT ∗

S = S0 +∆SS∗.

(2)

The buoyancy is modelled in terms of the extended Boussinesq approximation. The density,
normalized to a background density ρ0 = 1, hence is given by

ρ = 1− α(T− T0) + β(S− S0) (3)

We follow standard notation, where the velocity is denoted by ~u(~x, t) = (u(~x, t), v(~x, t), w(~x, t)),
and T (~x, t) is the (potential) temperature with units chosen to scale between 0 and 1, S(~x, t) is
the solute concentration scaled in similar manner such that S is between 0 and 1, and p(~x, t) is
the pressure. The height H, the thermal diffusion coefficient κT , the solute diffusion coefficient
κS , the background density ρ0, the kinematic viscosity ν, the vertical temperature contrast
∆T , the vertical saline contrast ∆S, the thermal expansion coefficient α, the saline expansion
coefficient β and the gravitational acceleration gz are needed to describe the double diffusive
system. The dimensionless set of equations is obtained by applying the mentioned scaling (2),

∇ · ~u = 0

Pr−1
D ũ

D t
= −∇p+∆~u− RaT · T +RaS · S

DT

Dt
= ∆T

DS

D t
= Le∆S

(4)

after having introduced the thermal Rayleigh number

RaT = αg∆TH4

κT ν
,

the solute Rayleigh number

RaS = βg∆SH4

κT ν
,

the Prandtl number Pr = ν
κT

, the Lewis number Le = κS

κT
and the stability parameter Rρ = RaS

RaT
.

The material derivative is defined as D/D t = ∂/∂ t + ~u · ∇. We have dropped the scaling
indicator ∗ here for better readability.

The height of the domain is set to 1 < H < 5 and the thermal diffusion time scale τ = H2

κT

defines one unit of time. Especially the correct height of the box is difficult to find, since the
expected height of the single layers vary in time. However, a rough estimate gives Hlayer = R−1ρ

for a macroscopic and well developed layer. Consequently, the dynamical behaviour of double
diffusive convection is described by the four dimensional space spanned by (Pr,Le,RaT,Rρ). The
boundaries are assumed to be impermeable for the temperature (top: T = 0, bottom: T = H)
and the solute (top: S = 0, bottom: S = H). This ensures a thermal and a solute diffusive flux
of ∆T

H
= ∆S

H
= 1. Impenetrable, stress free boundary conditions are set for the velocity, hence

∂v
∂z

= 0 and u = 0 with z denoting the vertical direction. The horizontal boundary conditions
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are periodic. We define the standard box by setting H = 1, ∆T = 1 and ∆S = 1. In order
to use higher boxes with, e.g., the scaling factors aH and a∆T as well as a∆S, the Rayleigh
number as function of the height needs to be rescaled by

Ra[aH] = Raref · a4. (5)

The reference Rayleigh number Raref refers always to a box with height H = 1 and gradients in
temperature and the solute as defined. However, it is very convenient to compare different box
geometries with Raref . The simulation time changes accordingly (aH)2.

2.1. Numerical setup

The governing equations are solved numerically with the ANTARES software suite, which treats
advective terms with a 5th-order WENO type scheme on a rectangular grid. A comprehensive
overview on the numerical details of this code is presented in Muthsam et al. [9] and Zaussinger
and Spruit [16]. The interior domain consists of several layers ‘peeled off’ from the boundary
of the underlaying convective zone. Hence a non-uniform grid is not needed. The main focus in
choosing the grid size lies on the resolution of the solute boundary layers, which are the steepest.
Not resolving them is a major limitation and hence would alter extrapolations in the numerically
non-feasible stellar case significantly. Consequently, the thermal and the solute boundary layers
are resolved with at least three points to guarantee correctly calculated fluxes. The minimum
resolution can easily be estimated with the thermal Rayleigh number, by estimating the thermal
boundary layer thickness δT ,

δT
H
≈ 4

√

1

RaT · Pr
(6)

and by using
δS =

√
Le δT , (7)

the solute boundary thickness is calculated in turn. The layer formation itself is triggered by a
linear temperature and solute gradient, and a small perturbation in the solute.

2.2. Model parameters and box geometry

The four dimensional parameter space spanned by the quantities (Pr,Le,RaT, Rρ) is too
large to be covered by numerical simulations without excessive computational expenses. The
astrophysically relevant restriction of Le < Pr reduces the computational amount significantly.
This is reflected by the Schmidt number, Sc = ν

κS
, which is typically in the oder of Sc ≈ 100.

In the following the ‘loosely’ astrophysical (giant planet) based case of Pr = 1 and Le = 0.01 is
investigated in more detail.

Since layer formation needs a certain amount of convective cells, the aspect ratio is an
important factor. Based on a couple of initial tests, the aspect ratio is set to 2, which results
in a typical box geometry of height H = 5 and width L = 10. This leads to thermal Rayleigh
numbers of RaT > 107, where the smallest scales are resolved by a standard Smagorinsky subgrid
model. In order to reduce confusion all values are given in terms of the reference height H = 1
and have to be scaled according to equation (5).

3. The giant planet case with Pr = 1 and Le = 0.01
This case represents values, which are comparable to a giant gas planet with 10−2 < Pr < 1
and Le = 10−2. The study is covered by 72 numerical simulations, where the parameter
space is spanned by the Rayleigh number and the stability parameter (see table 1). The
dynamical changes have typically occurred within τ = 0.1, which reduces the computational costs
significantly. The numerical time step is of the order of ∆τ = 10−6 and gives a computational
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Rρ

Raref 1 1.1− 1.3 1.4 1.5 1.6 1.7− 3.5
5.0 · 103 C LU D D D D
1.0 · 104 C LU L4 D D D
1.5 · 104 C LU L5 D D D
2.0 · 104 C LU L6 L6 D D
5.0 · 104 C LU L6 L7 D D
1.0 · 105 C LU L6 L8 D D
2.0 · 105 C LU L7 L9 D D

Table 1. Semi-convective regimes for varying Raref and Rρ after τ = 0.05. No layering, full
overturns (C), layers unstable with tendency to full overturning (LU), diffusive or conductive
(D) and layered regime with number X of staircases (LX).

effort of two days on 36 processors for each simulation. However, this is very cheap compared
to other setups. High resolution 3D simulations with more than 400 points in each direction are
very expensive, especially, when non-linearities begin to dominate the processes and thus lead
to restrictive, advection dominated time steps. Since the stability parameter is less then the
predicted maximum value of Rmax = Le−0.5 = 10, layer formation is expected in 1 < Rρ < Rmax.

Figure 1. Solute (yellow high content, black low content) for varying stability parameters.
RaT = 3 · 107, Pr = 1, Le = 0.01: a) Rρ = 1 fully convective, b) Rρ = 1.3 unstable layering, c)
Rρ = 1.4 stable layering, d) Rρ = 3 conductive.

Chabrier and Baraffe [3] and Zaussinger et al. [16], [17] estimated 105 − 106 layers per
pressure scale height Hp after a short initial layer formation period of some weeks. However,
this number of layers has not to be simulated, since most relevant fluid dynamical processes can
be investigated with 4–7 stairs. The layered convective regime is embedded between the fully
convective regime, Rρ / 1, and the very stable conductive regime, Rρ,max ' 10. The existence
of this upper stability limit Rρ,max is known from, e.g., Stevenson [14] and in the astrophysical
context from Spruit [13].
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However, the actual range of layered convection for the presented values of Rayleigh numbers
is fairly small, 1.4 < Rρ < 1.5, which coincides with theoretical estimates from Mirouh [8] and
Leconte [12] that a minimum stability parameter Rρ,min separates the layered regime from the
turbulent diffusive state. We found this value for Rρ,min ≈ 1.5 (see figure 1c). The stability
change from layered convection to turbulent diffusive convection is very sharp and needs to be
investigated by numerical simulations for each new set of parameters. Since the super adiabatic
gradient in the interior of a giant gas planet like Jupiter is extremely small, ∇ − ∇ad ≈ 10−8

(see [3]), it has to be a happy coincidence that ∇µ ranges exactly between 10−8−10−7 to trigger
layering over the whole pressure scale height Hp in the small layering windows. This leads to the
assumption that layering is a rare phenomenon and rather local than global. We found that the
amount of layers increase with the Rayleigh number and is only limited by the vertical extent of
the box and by Rρ,max. Since merging processes between convective cells destabilise the stack,
the layered regime is only a short-term phenomenon. Merging effects and local entrainment
decompose the stack, which leads to the question, how important the (temporal) layered semi-
convective state is for the planetary evolution. A detailed study on time scales is currently in
preparation.

4. Conclusion

Realistic numerical simulations of double diffusive stacks are a formidable task, since the small
diffusivities and especially the extreme gap between the convective and the evolutionary time
scale of the giant planet have to be covered. It seems to be impossible to simulate a whole
pressure scale height with all scales resolved. But this is not necessary, since extrapolations from
numerically feasible parameters and theoretical assumptions give enough tools to investigate the
astrophysically relevant regime. The results show that the geophysical relevant parameter space
can be applied to the astrophysical case, even when some properties like different time scales or
the heights are numerically challenging.
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