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Abstract. In the present work, the role of rotation with viscous tensor in anisotropic self-
gravitating plasma has been investigated using magnetohydrodynamic (MHD) model and Chew-
Goldberger-Low (CGL) fluid theory. The general dispersion relation is obtained by normal mode 
analysis theory with the help of linearized perturbation equations and further discussed with some 
limiting cases. The modified condition for Jeans instability has been obtained. The influence of 
considered parameters on the growth rate of instability is shown analytically and numerically. The 
result of present study may be useful in the region of spiral arms of galaxy. 

1. Introduction 
The research of self-gravitational instability in astrophysical and space plasma has acquired considerable 
attention for years because of its prominent role in structure formation. Jeans [1] was the first to 
investigate the self-gravitational instability in plasma system. Since then a lot of investigation has been 
done to study the self-gravitational instability [2-4]. Recently, Sharma and Rimza [5] have studied self-
gravitational instability in two fluid spin quantum plasma. In various astrophysical and space situations the 
plasmas are collisionless and strongly magnetized. For such a case the pressure becomes anisotropic and 
separates into parallel and perpendicular components with respect to the direction of magnetic field. A 
large number of researchers have studied the effect of anisotropic pressure on wave propagation and 
instabilities in plasma. Gliddon [6] has investigated that self-gravitating plasma with anisotropic pressure 
distribution also exhibits firehose instability along with gravitational instability. Bhatiya [7] has 
considered the anisotropic pressure and finite Larmor radius to investigate the Jeans instability of plasma. 
Along with this, the other transport properties like viscosity of the medium also become anisotropic. In 
this direction the influence of viscosity on magnetohydrodynamic waves has been examined by Mangesha 
and Tessema[8]. The self-gravitational instability in anisotropic plasma with tensor viscosity and heat flux 
has been studied by Mangesha and Tessema [9]. 
     In addition to this, rotation also plays important role in the instabilities of many astrophysical plasma 
like spiral arms of galaxy. Chandrashekhar [10] has examined the role of rotation and magnetic field on 
Jeans instability of plasma system. The effect of rotation on self-gravitating instability in anisotropic 
plasma with finite Larmor radius has been studied by Bhatiya [11].Therefore in the present paper, we have 
studied the role of rotation and tensor viscosity on the Jeans instability of anisotropic plasma. 
The paper is arranged in following manner; using basic set of equations, a general dispersion relation has 
been derived in section 2. In section 3the dispersion properties and conclusion have been given. 

Frontiers of Physics and Plasma Science                                                                                             IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 836 (2017) 012027         doi:10.1088/1742-6596/836/1/012027

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 
2. Basic equations and dispersion relation 
The governing basic set of equations for the self-gravitating viscous anisotropic plasma with angular 

velocity of rotation Ω  0,0,Ω can be given as 

     The continuity equation is given by 

                                                             0td     u                            (1) 

where  is fluid density,u is fluid velocity and  t td    u  is the convective derivative. 

 The momentum transfer equation is    

                                          . 2td            u P J B u Ω                                     (2) 

 In above expression first term of right hand side represents the anisotropic pressure and can be defined 
as  ||

ˆ ˆ ˆP P P   P I nn , where P  is anisotropic pressure perpendicular to the magnetic field and ||P  is 

the anisotropic pressure parallel to the direction (n) of magnetic field. The symbol I  is identity matrix. 
The anisotropic pressure P  and ||P  can be given as 

                                                                2 3
|| 0td PB  

                                                                            
(3) 

                                                               1 1 0td P B  
 

                                                                            
(4) 

 Now, in the second term B is the magnetic field along the z-direction and  1
0
 J B is current 

density, where 0  is the magnetic permeability of free space. Hence the fundamental relation of Lorentz 

force can be written as 

                                                    
 

21

20

B
= - B B


 

   
 

J B
                                                                       

(5) 

 The Poisson’s equation for gravitational potential is 

                                                             
2 4 G                                                                   (6) 

and the equation for magnetic force is given by 

                                                            td    B u B
                                                               

(7) 

     In equation (7) is the gravitational potential and G is gravitational constant. In expression (1) the last 
term describes the viscous tensor and the components of viscous stress  
tensor are given as 

              
   0 0

0, ,
2 2xx xx yy yy xx yy zz zzt t t t t
            

                                                   
(8) 

where 0  is compressive viscosity coefficient and   ,2 3 . .ab a b b a a bt u x u x u       
 
Let us assume 

that the perturbation in all the quantities is of the form  ˆikz i te  , where k is the wave numbers in z- 
direction and   is the wave frequency. We linearize equations (1) - (8) using 0 1,   0 1u u u Β Β Β , 

0 1n n n  and 1o    , where  1u ,
1Β , 1n and 1  are the first order linearized quantity and 

equilibrium quantity 0u and o  are taken equals to zero. We get the following components of momentum 

transfer equation by using linearized form of equations (1)-(8) and applying considered perturbation, as 

                                                

2
2 2

||
0

2 0z x z y

B
p p k u i u  



          
                                                

(9) 
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(10) 
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(11) 

After the usual algebraic manipulation, the general dispersion relation can be obtained as 
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(12) 

 Equation (12) represents the general dispersion relation for self-gravitating rotating anisotropic plasma 
with tensor viscosity. If we ignore rotation and viscosity terms in equation (12) then the obtained form 
becomes identical to the result given by Gllidon [6]. Thus, the presence of rotation and viscosity modified 
the general dispersion of self-gravitating anisotropic plasma system.  
 
3. Discussions and conclusions 
The general dispersion relation (12) has two factors in which first factor represents the Alfven mode  

                            

22 2
|| ||4 2 2 2 40 0

0 0

2 4 0
P P P PB B

k k 
     

                 
                                            

(13) 

which is modified in the presence of anisotropic pressure and rotation while it remains unaffected due to 
tensor viscosity. The presence of anisotropic pressure in Alfven mode gives the firehose instability in the 
rotating self-gravitating plasma system if the parallel anisotropic pressure becomes greater than the sum of 
magnetic pressure and perpendicular anisotropic pressure i.e.,  2

0 0 ||P B P   .  

     The second factor of general dispersion relation (12) represents the self-gravitating mode 

                                                    

2
||2 2 20
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k
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(14)
 

which is modified due to the presence of tensor viscosity. The presence of rotation and perpendicular 
anisotropic pressure has no influence on the self-gravitating mode. The condition of Jeans instability 
obtained from equation (14) is 

                                                                 

|| 2 23
J

P
k 




                                                                                
(15) 

     Equation (15) shows the condition of Jeans instability for rotating anisotropic viscous plasma. It is clear 
from above inequality that the presence of rotation and tensor viscosity plays no role in condition of self-
gravitational instability but these terms affect the growth rate Jeans instability in rotating anisotropic 
viscous plasma. 
     Now, to see the influence of considered parameter on growth rate of self-gravitational instability, we 
normalize the self-gravitating mode (14) using i    as 

                                                

*2 * *2 * *24
3 1 0

3
k k     

                                                                   
(16) 

where   
1

* * 2
||,J Jk k P       and  *

0 ||J P   . 

     The influence of tensor viscosity ( * ) on the growth rate of self-gravitational instability against the 

wave vector (k*) has been shown in figure 1. The solid, dashed and dotted curves are for * = 0.0, 0.5 and 
1.0 respectively. The nature of curves shows that the growth rate of instability decreases with increasing in 
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the tensor viscosity. Hence the viscosity has stabilizing effect on growth rate of self-gravitational 
instability in anisotropic rotating plasma system. 
 

 
Figure 1.  Normalized growth rate of Jeans instability against the normalized  

                                         wave number for different values of viscosity. 
 
     In conclusion the Alfven mode is affected due to the presence of anisotropic pressure and rotation 
while the gravitating mode is influenced by the presence of compressional viscosity. The condition of 
Jeans instability is affected byparallel anisotropic pressure.  
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