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Abstract. The effect of pressure anisotropy is studied on the growth rate of gravitational 

instabilities in a viscoelastic medium.  The problem is constructed with generalized 

hydrodynamic fluid model and Chew-Goldberger–Low fluid model for anisotropic pressure 

then a general dispersion relation for the viscoelastic medium is obtained using the normal 

mode analysis. The general dispersion relation is reduced for propagation along the magnetic 

field and propagation perpendicular to the magnetic field. These two modes are discussed for 

the classical or hydrodynamic and kinetic limits and conditions for jeans instability are 

obtained. We found that condition of Jeans instability is modified for viscoelastic medium 

under kinetic limit and depends on compressional viscoelastic mode. Numerical analysis for 

longitudinal mode for kinetic regime shows that the velocity of compressional viscoelastic 

mode has a stabilizing effect on the growth rate of Jeans instability. In the transverse mode, the 

Alfven velocity for kinetic regime has a stabilizing influence on the Jeans instability. 

1.  Introduction 

To know the process of formation of astrophysical objects like stars, planets, comets, asteroids, the 

study of gravitational instability is of central importance. Jeans [1,2], Chandrasekhar [3] and Gliddon 

[4] studied the gravitational instability. Stellar matters exhibit both viscous and elastic characteristics 

together and behave like viscoelastic fluids. To study the gravitational instability of viscoelastic 

medium the generalized hydrodynamic model or GH model [5]-[6] is a more appropriate model. In 

this model normal viscosity coefficient is similar to a viscoelastic operator or Frenkel term [5]. The 

problem of gravitational instability has been extensively investigated for magnetized, isotropic and 

viscoelastic plasma by many investigators such that Kaw and Sen [6], Banerjee et al. [7], [8]. Janaki et 

al. [9], [10], Prajapati et al. [11], Prajapati and Chhajlani [12] and Sharma et al. [13] discussed the 

gravitational instability of strongly coupled plasma with GH model.  

     Chew et al. [14] obtained a closed set of hydro-magnetic equations by expanding the distribution 

function in the inverse power of ionic charge to mass ratio and by assuming that the particle 

correlation are due to a strong magnetic field rather than collisions. In view of the importance of the 

anisotropic pressure plasma various authors [15-17] have discussed instability problems using CGL 

equations. Although, MHD theory is widely applied in fusion plasma it gives a great support in 

illuminating the study of various instabilities. But in modern toroidal magnetic confinement devices, 

the plasma contains significant fast populations originated from neutral beam injection and ion 

cyclotron resonance heating, suggesting strong pressure anisotropy [17], [18]. Pressure anisotropy is 

not covered by the isotropic MHD theory, so the CGL approximations are used in the present work. 
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To study the gravitational instability of viscoelastic medium the GH is used. None of the investigators 

so far have studied the gravitational   instability   of anisotropic pressure for a viscoelastic medium 

under kinetic limit and hydrodynamic or classical limit using GH fluid model and CGL model. Our 

aim is to understand the physical behavior of linear waves occurring in anisotropic pressure 

viscoelastic magnetized plasma. 

2.  Linearized perturbation equations. 

Consider a self-gravitating, viscoelastic fluid of uniform mass density ρ with pressure anisotropy P. 

The medium is assumed to be embedded in a strong magnetic field B (0, 0, B). The scalar pressure is 

replaced by a pressure tensor   ,nnIP   ppp II
where p and IIp are the components of 

pressure perpendicular and parallel to the direction of the magnetic field and I is the identity matrix. If 

the perturbations in the fluid pressure, density, fluid velocity, magnetic field and gravitational potential 

are p1, ρ1,  t ξ/u ,  B1,  respectively the linearized equations for viscoelastic fluid are given by 
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where symbols , τ,  χ and η denote gravitational potential viscoelastic relaxation time, bulk viscosity 

and shear viscosity coefficient of the viscoelastic plasma. The term  t /1   is called the Frenkel 

term. We considered that the medium is perturbed by Lagrangian displacement  
zyx  ,,ξ and 

the perturbed quantities of the form  ti rk.exp where k = (kx, ky, kz) is wave number and ω  is the 

frequency of the harmonic disturbances. From the linearized equations we obtained the following 

equation. 
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where .,,,, 2222222222

zyxzIIyxyxzII kkkkkkkkk    Equation (6) is the general 

dispersion relation for anisotropic pressure viscoelastic magnetized plasma.  On ignoring the 

viscoelastic effect for ωτ<< 1 equation (6) reduces to the dispersion relation obtained by the MHD and 

CGL models. This can be easily verified by the other previous results, obtained by Gliddon [4], 

Bhatiya [15] and Kalra et al. [16]. 

3.  Discussion of General Dispersion Relation. 

We discussed the dispersion relation (6) by reducing it into two different modes. 

3.1 Mode 1: Propagation along magnetic field. 

For waves propagated in the direction of the magnetic field i.e., 0k  the equation (6) reduces to 
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3.1.1.  Classical limit ωτ<< 1. By taking ωτ<<1 in the first factor of equation (7) we obtained

 
1 2

4 3 .
II II

k G p   which is identical to condition of Jeans instability obtained by Gliddon [4]. This 

criterion is same that has been obtained by Jeans [1] and Bhatiya [15]. 

3.1.2.  Kinetic limit. For ωτ>>1 we obtained the condition for Jeans instability from equation(7), which 

is /
1

2 2

II II
k 4 π Gρ 3 p ρ v   

where     3/42v , v is the velocity of compressional viscoelastic mode. 

It is clear that the condition of Jeans instability is modified for kinetic limit and depends on 

compressional viscoelastic mode. From first factor of equation(7) we obtained dimensionless equation 
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The normalized growth rate as a function of normalized wave number is plotted for various values 

of v*(0.1, 0.3 and 0.6) in equation (8). We found from figure (1) that the velocity of compressional 

viscoelastic mode has stabilizing effect on the growth rate of Jeans instability. 

3.2 Mode 2: Transverse mode of propagation ( 0IIk ). 

In this mode the wave propagation is perpendicular to the magnetic field and we obtain the reduced 

dispersion relation by putting 0IIk in equation (6). 
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Equation (9) shows a gravitating, shear viscous mode which depends upon magnetic field, pressure, 

shear and bulk viscosity coefficients. This generally leads to the compressional viscoelastic mode. 

This equation is discussed for classical and kinetic limits.  

 

3.2.1 Classical limit ωτ<<1. From the constant term of equation (9) in classical regime the condition 

of instability is     2 22 8 4k p B G   
 

  which is modified due to pressure anisotropy and depends 

on magnetic field, pressure and density of the medium and is similar to the criterion obtained by 

Gliddon [4] and Sharma and Chhajlani [19] neglecting quantum effect in their case. Jean’s criterion 

does not depend on the viscoelastic effect. 

 

3.2.2 Kinetic limit. For ωτ>>1 from equation(9) we obtained the condition of instability

 2 24 2 / / 4k G p B v   


    to study the effects of Alfven velocity due to the magnetization and 

compressional velocity on the growth rate of Jeans instability, equation(9) is solved for ωτ>>1 

numerically with the parameters 
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 is Alfven velocity, we obtained the equation for kinetic regime in dimensionless 

form as 
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     The growth rate of Jeans instability versus wave number for various values of Alfven velocity ( *
V  

= 0.1, 0.3 and 0.5) with fixed value *v  = 0.2has been shown in figure2. The growth rate decreases with 

increase in value of Alfven velocity. Therefore, in the perpendicular direction of propagation the 
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Alfven velocity has a stabilizing influence on the Jeans instability.  

                             

Figure 1.The growth rate versus wave number         Figure 2. The growth rate versus wave  

               for different values of Alfven velocityfor           number for different values of compre- 

               perpendicular propagation (kinetic limit).                    ssional velocityfor parallel propagation  

               (kinetic limit). 

4.  Conclusions 

A dispersion relation for viscoelastic anisotropic magnetized fluid has been derived employing the 

normal mode analysis using GH model and CGL fluid models.The dispersion relationis discussed for 

two modes.For waves propagated in the direction of the magnetic field, in the hydrodynamic limit 

viscoelastic parameters have no effect on the condition of Jeans instability. In kinetic regime the 

condition of Jeans instability modified and depends on compressional viscoelastic mode. Numerical 

analysis shows that the velocity of compressional viscoelastic mode has a stabilizing effect on the 

growth rate of Jeans instability.In transverse mode of propagation for classical regime the Jean’s 

criterion is modified due to pressure anisotropy and it depends on magnetic field, pressure and density. 

Under kinetic regime for transverse mode of propagation the critical Jeans wave number depends on 

relaxation time, shear and bulk viscosity or on compressional velocity. We numerically observed that 

Alfven velocity has a stabilizing influence on the growth rate of the Jeans instability. 
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