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Abstract. Using quantum hydrodynamic model (QHD) of semiconductor plasma for a one-

component we present an analytical investigation on parametric interaction of a laser radiation 

in an unmagnetised material with a strain-dependent dielectric constant. The nonlinear current 

density and third order susceptibility are analyzed in different wave number regions in presence 

and absence of quantum effect. We present the qualitative behavior of threshold pump intensity 

with respect to wave number in presence and absence of quantum effect. The numeric 

estimates are made for n-BaTiO3 crystals at 77k duly irradiated by pulsed 10.6μm CO2 laser. It 

is found that the quantum correction through Fermi temperature and Bohm potential terms 

modifies the threshold characteristics. 

1. Introduction 

The field of quantum plasma physics is vibrant and evolving rapidly. Since last few years, many 

investigations in the field of quantum plasma are carried out. This has been characterized by high 

plasma particle densities and low temperatures, in contrast to classical plasma which has high 

temperatures and low particle number densities. Quantum plasmas are common in different 

environments, e.g. in super dense astrophysical bodies, in intense laser-solid plasma experiments, 

quantum dots, and in ultra-small electronic devices, quantum diodes, ultra cold plasma [1-8]. 

     Quantum phenomena in semiconductor devices are increasingly important as the characteristic 

lengths of the modern devices are of the order of nanometer only. In fact, there are devices, like 

resonant tunneling diodes, whose behavior is essentially based on quantum effects. The quantum 

effects become important in plasmas, when the de-Broglie wavelength associated with particles is 

equal to or greater than the average inter particle distance [9]. In quantum plasmas, the electron are 

degenerate and obey the Fermi-Dirac distribution function, while non-degenerate strongly correlated 

ions are coupled with electrons via the electromagnetic fields. Here the quantum mechanics comes into 

the picture due to (1) Overlapping of electron wave functions owing to the Heisenberg uncertainty  

principle, leading to electron tunneling through the quantum Bohm potential and (2) electron exchange 

and electron correlations because of the electron one half spin effect [10]. The interaction between 

electrons and lattice vibrations is one of the fundamental interaction processes in solids. This 

interaction gives useful information regarding band structure of the semiconductor. The electron 

phonon interaction can lead to amplification of acoustic waves by the application of dc electric field 

that has been commercially exploited for the fabrication of delay lines, acoustic-electric amplifiers, 

acoustoelectric oscillators etc.  

     Usually two kinds of acoustic effects are studied. The first kind, namely, the sound attenuation and 

the change of sound velocity due to interaction with electrons, at small amplitudes are linear in the 

amplitude of the acoustic wave .The simplest  phenomenon  nonlinear in the sound amplitude is the so-

called acoustoelectric effect, which is due to a drag of charge carriers by an acoustic wave[11]. Since 

the acoustic wave is 105 time slower than the electromagnetic waves, it enables  one to design and 
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fabricate very sophisticated signal processing devices which are orders of magnitude smaller in size 

than its electromagnetic counterpart and perform the same functions[12].                                                                            
                                                                                                                                                                                                                                                                      

     The third order nonlinear optical susceptibility χ is, in general, complex quantity and is capable of 

describing the interference between various resonant and non-resonant processes. The present analysis 

is based on quantum hydrodynamic model (QHD) model for the electron dynamics. The QHD model 

for plasmas has been developed by Manfredi and Hass[13]. The QHD is an extension of classical fluid 

model used for plasma physics. The QHD model used in the paper includes two different quantum 

effects: (i) quantum diffraction, and (ii) quantum statistics. Quantum diffraction is due to the terms 

proportional to ћ2 in equations of motion and continuity in the QHD model. The QHD model consists 

of a set of equations describing the transport of charge, momentum and energy in a charged particle 

system interacting through a self consistent electrostatic potential. Mathematically the QHD model 

generalizes the fluid model for plasmas with the inclusion of a quantum correction term, i.e. Bohm 

potential. This extra term can appropriately describe negative differential resistivity in resonant 

tunneling diodes. The advantage of the QHD model is that they are able to describe directly the 

dynamics of physical observable and simulate the main characters of quantum transport model for 

charged particle systems [14]. Ghosh and Yadav [15] discussed the amplitude modulation and 

demodulation in strain dependent diffusive semiconductors. Quantum effect on   parametric 

amplification characteristics in piezoelectric semiconductors was reported by Ghosh and his coworkers 

[16].  

     It appears from the available literature that in most of the previous reported works in field of 

parametric interaction of acoustic waves in quantum plasma SDDC effect has not taken into account. 

Thus, motivated by the above we have focused our attention on the modifications occurred by 

including the SDDC effect and we have analytically investigated the quantum effect on parametric 

process in material with high dielectric constant. The process is characterized by the effective third 

order susceptibility induced due to nonlinear current density in the high dielectric constant 

semiconductor plasma medium.  

The paper is organized in the following way, the basic equations used under QHD model is given in 

section 2. In section 3 authors present numerical appreciation of the results obtained followed by 

physical discussion and final conclusion. 

2. Theoretical formulation 

In order to determine the third order susceptibility a spatially uniform pump field,

 0 0 0expE i k x t   is applied along the direction of wave propagation k kx .The basic equations 

used in present analysis are as follows. 
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where the symbols have usual meaning. Following standard approach and usingequation (1) to (5) 
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     The symbol  '2 1f f eV V  , 2 2 8e B fk mk T  ,   0E e m E , and 2 2 2 '2

p p fk V   , where

 
1

2 2

0p n e m  is the plasma frequency. In the derivation of equation (6) we have neglected the 

Doppler shift under the assumption that  0 0kV   .  
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     The coupled equations (7) and (8) are obtained from equation (6) under rotating wave 

approximation(RWA) 
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     Subscripts s and f stand for slow and fast components respectively. Asterisk (*) represents complex 

conjugate of the quantities. Using equations (7) and (8), we obtain  
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where 2 2 2

1 1p     and 2 2 2

2 p a    . The induced polarization as the time integral of current density 

we obtain                                                                                                                                                                                                                                                   
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     This leads to the third order nonlinear susceptibility as   
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Now rationalizing equation (11) one obtains the real and imaginary parts of the complex third order 

susceptibility as 
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The formula given in equations (12) and (13) reveals that the crystal susceptibility is influenced by 

quantum mechanical correction through 1 ,
2 and strain dependent dielectric constant. Here the 

damping of acoustic wave arises due to its acoustoelectric coupling with electron plasma waves. To 

compensate for the damping losses of the acoustic wave in the SDDC medium, one should apply a 

pump of a certain minimum amplitude called the threshold pump amplitude. The threshold pump 

amplitude 0thE  may be obtained by setting the 3

r
  

equation (12) equal to zero as 
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3. Results and discussions 

For analytical investigation of the parametric interaction processes we consider the irradiation of 

semiconductor sample BaTiO3 by CO2 laser at 77K. The parameters are 
00.0145m m , 2000s  ,

3 13 10aV ms   , 11 15 10 s   , 14 1

0 1.78 10 sec    , 12 12 10 seca
 

3 34 10 kgm   . 

It is inferred from figures 1, that the 3

r
  

increases with an increase of k in the positive group velocity 

dispersion regime a akV  e. 3

r
  

is a positive quantity and increases with k. A slight increase in k  

beyond which point cause a sharp fall in 3

r
  

making it vanish at a akV  . After this resonance 

condition, 3

r
  

decreases sharply and then again starts increasing rapidly and saturates at larger 

acoustic wave number k  values. It is worth mentioning that 3

r
  

can be both positive and negative for

8 85 10 7 10k    .It can be observed that 3

r
  

exhibits the usual dispersive characteristics of a 

medium and as increase in 0n , increases the negative and positive value of the 3

r
  

without changing 
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the resonant condition.  One can infer from figure 1 doping level, and wavelength regime can enable 

one to achieve enhanced parametric dispersion. 
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Figure1. Variation of real part of susceptibility   
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Figure 2. Variation of 0thE  with k  at     

                 
26 3

0 4 10n m   with and  

                  without quantum effect

     Figure 2 displays the variation of threshold pump field viz 0thE on wave vector k  using the material 

parameters with and without quantum effect.It is shown that as the wave vector increases the threshold 

electric field decreases for both the curves. While in term of pattern it is found that for lower values of

k , 0thE decreases sharply while in case of the higher values of wave vector 0thE decreases with lower 

decapitation rate and becomes independent of it.Threshold value is also found to be influenced by 

quantum effect through the term
1 . In high doping regime when

2 2 '2

p fk V  and
2 2

1bp  plasma 

mode dispersion dominates of quantum effect increases the value of 0thE . 
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