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Abstract. The evolutionary dynamics of strongly nonlinear waves (of arbitrary amplitude)in an 

inhomogeneous complex astrophysical viscous cloud is investigated without recourse to any 

kind of swindle. It consists of warm lighter electrons and ions (Boltzmanian); and cold massive 

bi-polar dust grains (inertial fluids) alongside vigorous neutral dynamics in quasi-neural 

hydrodynamic equilibrium. Application of the Sagdeev pseudo-potential method transforms 

the analytic model into a conjugated pair of intermixed non-integrable energy integral laws. A 

natural excitation of electrostatic quasi-monotonic compressive dispersive shock-like eigen-

modes is numerically demonstrated. In contrast, the self-gravitational waves grow purely as 

non-monotonic compressive oscillatory shock-like structures. The unique features of both the 

distinct classes are depicted. Their non-trivial significance in the astro-context is emphasized. 

1.  Introduction 

The nonlinear astrophysical eigen-mode dynamics amid gravito-electrostatic interplay have been an 

interesting area of research due to its diversified roles played in the interstellar space and cosmic 

environments. Their significance in the transport processes of fluid material in star and bounded 

equilibrium structure formation mechanisms, via the re-distribution of involved dynamical properties 

leading to astro cloud fragmentation into clumpy substructures, is well known [1]. Such eigen-patterns 

cause kinetic energization of astro particles responsible for different phenomenological tremendous 

effects on the Jet-induced (triggered) mode of star formation evolutions yet to be well explored [1-3]. 

At this backdrop, we herein develop an analytic model to see the strongly nonlinear gravito-

electrostatic eigen-modes in a complex inhomogeneous bi-polar astro cloud in the Sagdeev pseudo-

potential framework [4] on the relevant astro fluid scales of space and time. The dynamics and 

relevancy of the explored shock-like structures in the astrophysical contexts are presented. 

2.  Model formulation 

We consider an inhomogeneous viscous astrophysical cloud model consisting of warm lighter 

electrons and ions (Boltzmannians); and cold massive bi-polar dust grains with partial ionization 

(fluids)in quasi-neural hydrodynamic equilibrium in a flat geometry (1-D).The multi-grains have equal 

polytropic indices of 3
d d dn
   

 
    [2, 5].We, for analytic simplicity, ignore the 

complications, such as turbulence, non-thermal distributions, cosmic ray interactions, etc. The 

electronic and ionic dynamics are governed by the Boltzmann distribution laws in normalized form 

with all the generic notations [3] respectively as  

                                                          
  exp0ee NN                                                                             (1) 

                                                       
  exp0ii NN .                                                                           (2) 
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     The cloud dust dynamics are dictated by the modified normalized equations of continuity, 

momentum balance, adiabatic pressure and coupling electro-gravitational Poisson potential 

respectively cast as   

    0
dj dj dj

N T N M X       
,                                                               (3) 
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     The independent spatiotemporal coordinates, X and T, are normalized by the Jeans length 
J  and 

Jeans time   11 
 JssJ c  ; respectively. 

eN , 
iN  and djN   are the normalized concentrations of 

electrons, ions and dust species. The normalization is by the respective equilibrium values 
0en , 

0in  

and 0djn , with j = ‘+’for positively charged grains), ‘-’ for negative grains and ‘n’ for neutral grains. 

Next, djq = eZdj
is the grain charge in terms of the charge number 

djZ and electronic charge e.

djddjd mm  , denotes the mass ratio of the negative to the jth dust species and  Gme dd  0

2  .The 

universal gravitational constant, through which gravitating matter interacts, is denoted by G (=
111067.6   m3 kg-1 s-2). dj is the normalized(by Jeans value) kinematic viscosity of the jth dust fluid. 

The fluid velocity
djM  is normalized by the dust acoustic phase speed,   21

 dpss mTc , with
eT ~

iT =
pT  

(>>
djT , the jth species temperature) as the plasma temperature (in eV). 

djdjdjdj NppP  0
is the dust 

adiabatic pressure normalized by the equilibrium dust isothermal pressure, 
djdjdj Tnp 0

. Lastly, the 

electrostatic and gravitational potentials, and  , are normalized by eTp
 and 

2

ssc ; respectively.  

3.  Eigen-mode structure equations 

To apply the well-known Sagdeev pseudo-potential method [4],all the physical dependent variables in 

equations (1)-(7) are transformed into a time-independent form by the Galilean coordinate 

transformation, TX   , with  denoting the normalized (by 
ssc ) reference frame velocity. We 

introduce two integral functions as,  
0

j jd d
f N d



   , approximating pure electrostatic case, and 

   


0

dNg djdj
, assuming pure self-gravitational one. We analytically solve for 

djN  under the 

appropriate boundary conditions as, 1eN , 1iN , 1djN , 0jM , 0 , 0 , 0   

and 0   at  for local disturbances(with dj  0). It leads to the inter-coupled energy 

integral laws as 

                                                                        
2

1 2 , 0
E

V      ,                                                 (8) 
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2

1 2 , 0
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where the electrostatic and gravitational Sagdeev potentials are respectively given as 
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We perform analytical tests to check the existential conditions for nonlinear coherent structures to 

exist. It is seen that equation (10)-(11) satisfy the following conditions for compressive shock-like 

structures as 

                                   
  0,)( GEV ,  ( )

, ( ) 0
E G

V       
,at 0 , 0                                      (12a) 

                                          2 2 2

( )
, ( ) 0

E G
V       

, at 0 , 0                                                  (12b) 

                                              
  0,)( GEV , at 

max  (
max )                                                     (12c) 

                               
  0,)( GEV , at 

max0  (
max0  )                                            (12d) 

In the above equations except in the arguments, maps the gravitational counterparts. So, 

   , and ,
E G

V V    fulfil all the conditions equation (12), for the phylogenes is of compressive shock-

like patterns. 

4.  Results and discussions 

We numerically solve equations (8)-(9) for exact eigen-structure characterization with the fourth-order 

Runge-Kutta method [6] in judicious plasma parameter windows[2, 7]to get the results (figures 1-2). 

 
Figure 1. Profile of the normalized electrostatic [a] Sagdeev potential [  ,EV ], gradient  

                        [   ,EV ] and differential curvature [   ,EV
]; and [b] physical potential [ ],           

                        gradient [ 
] and differential curvature [  ] for   = 2.98. Fine details are   

                        discussed in the text. 

 

     Figure 1 shows profile of the normalized electrostatic [a] Sagdeev potential [  ,EV ,deflated by 

dividing with 10-17, blue solid line], its gradient [   ,EV ,by dividing with 10-17, red dashed line] 

and its differential curvature [   ,EV ,by dividing with 10-17,black dotted line]; and [b] physical 

potential [ , rescaled by dividing with 10-9,blue solid line], its gradient [ 
,by dividing with 10-9, 

red dashed line]and its differential curvature [  ,by dividing with 10-9,black dotted line]for   = 

2.98.Different inputs are  i  = 
21000.1   with   = 

21000.1  ,  i  = 
91000.2  ,  

i  = 
111000.1 

,  i  = 
41000.1  , and  

i  = 
31000.1  . The other parameters kept fixed are 

0en  = 
31000.5   m-3, 

0in  

= 
31000.5   m-3,  

0dn  = 
11000.7   m-3, 

0dn  = 
11000.1   m-3, 

0dnn  = 
11000.9   m-3, 

dZ  = 
21050.1  , 

dZ  = 
21000.1  , 

dm  = 
81080.2   kg, 

dm  =  
81000.1   kg, 

dnm  = 
111000.1   kg, 

1  = 
21010.1  , 

2  

= 
21020.1  , 

3  = 
21000.1  , 

d  = 
21000.2  , 

d  = 
21000.2  , and 

dn  = 
21000.1  . The 

electrostatic Sagdeev potential,  ,EV , evolves as a rhythmic chain of rarefactive disturbances with 

gradually decreasing amplitude (Fig. 1[a]). It is seen numerically as well that  ,EV  satisfies all the 

approximate analytic conditions (see(12)) for the evolution of compressive shock-like structures. The 
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Sagdeev field,   ,EV , shows damped oscillatory propagation as hybrid inter-mixture of 

gradually attenuated rarefactive and compressive disturbances (figure 1(a)). The Sagdeev potential 

curvature,   ,EV , likewise depicts the phase trajectory as an admixture of compressive and 

rarefactive patterns with decreasing wave amplitude. The physical potential , evolves as quasi-

monotonic compressive dispersive shock-like pattern for  =2.98 (figure 1(b)). The field,   

propagates as damped oscillatory compressive disturbances; whereas, the curvature  shows 

analogous features as figure1(a).It shows that the deviation from exact global quasi-neutrality is more 

pronounced near the vicinity of the cloud centre than elsewhere.   

 
Figure 2.Same as figure 1, but for the gravitational wave dynamics. 

 

     Figure 2 depicts the normalized self-gravitational [a] Sagdeev potential [  ,GV ,rescaled by 

multiplying with 10-2,blue solid line], its gradient [   ,GV , by multiplying with 10-2, red dashed 

line]and its differential curvature [   ,GV
, by multiplying with 10-2, black dotted line]; and [b] 

physical potential [ ], its gradient [  ] and its differential curvature [  ]as figure 1.Clearly,

 ,GV  evolves as oscillatory rarefactive disturbance with similar attenuation (figure2[a]). It fulfils 

the analytic conditions(see equation(12)) for compressive shock-like shapes. The Sagdeev field,

  ,GV , shows oscillatory propagation of gradually attenuated rarefactive and compressive 

disturbances (figure 2(a)). The Sagdeev potential curvature,   ,GV
, shows samefeatures as Fig. 

1[a].The self-gravitational potential,  , evolves as non-monotonic compressive oscillatory shock-

like structures (figure 2(b)). Its field  and curvature   show almost the same as figure 1(b). 

 

5. Conclusions 

The strongly nonlinear behaviour of gravito-electrostatic waves in inhomogeneous self-gravitating 

viscous multi-fluidic complex plasma are studied. It is methodologically executed in the Sagdeev 

pseudo-potential framework. The analysis depicts quasi-monotonic compressive dispersive shock-like 

fluctuations (electrostatic) and non-monotonic compressive oscillatory shock-like fluctuations (self-

gravitational) to exist in the astro cloud. The results may be useful in understanding diverse nonlinear 

wave activities in cosmic, interstellar space and astrophysical environments contributing to the 

formation mechanisms of bounded equilibrium astro-structures via dynamic cloud collapse processes. 
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