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Abstract.

The problem of electron or hole trapping by supersonic lattice kink is revisited. Supersonic
kinks in molecular chains with realistic interatomic potential produce local compression of the
lattice. Lattice compression enhances electron Fermi energy and therefore produces for the
electron a local potential hill, rather than a potential well, through the deformation potential
of the proper sign. Here we discuss the possibility of electron trapping above the top of its
tight-binding conduction band, where it possesses negative effective mass, by supersonic kink in
a molecular chain with realistic interatomic potentials and electron-phonon interactions. The
localization length of the electron wave function is much larger than lattice period in the case
of adiabatic electron dynamics and decreases with the velocity of the ultradiscrete supersonic
kink with the approximately sinusoidal envelope with the “magic” wave number. Such kinks
were revealed in lattices with different interatomic potentials with hardening anharmonicity.
Electron or hole can also be trapped by discrete breather (intrinsic localized mode) in the
lattice with realistic asymmetric anharmonic potential. The local quasi-static strain, produced
by the stationary or slowly-moving discrete breather in the lattice, can trap the electron (or
hole) with its localization below the lower edge of the conduction (or above the upper edge of
the valence) band.

1. Introduction
Plane one-dimensional shock waves can be considered as an example of supersonic propagation of
locally enhanced density in macroscopic condensed matter systems [1, 2]. One the other hand,
macromolecules in polymers present an example of nanoscale quasi-one-dimensional systems.
Electron-phonon interaction in quasi-one-dimensional macromolecules like polyacetylene can
result in the Pierles lattice dimerization and the formation of the gap at the Fermi level,
which strongly affect transport properties of such low-dimensional materials [3]. Essentially
the Pierles lattice dimerization in a quasi-one-dimensional system can be considered as the band
Jahn-Teller ef fect [4].

Supersonic kinks with local lattice compression can also propagate in quasi-one-dimensional
macromolecules of the polyacetilene type [5]. In this paper we discuss the scenario of electron
trapping above the top of its tight-binding conduction band, where it possesses negative effective

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOIL.
Published under licence by IOP Publishing Ltd 1



Jahn-Teller Symposium IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 833 (2017) 012021 doi:10.1088/1742-6596/833/1/012021

mass, by supersonic kink in a molecular chain with realistic interatomic potentials and electron-
phonon interactions. The reason of such kind of electron trapping is related with the property
that lattice compression enhances electron Fermi energy and therefore produces for the electron a
local potential hill, rather than a potential well, through the deformation potential of the proper
sign. Electron trapping by the potential hill is different from the previously considered electron
trapping by the effective potential well, produced by supersonic kink [6, 7, 8, 9, 10]. We consider
electron trapping by ultradiscrete supersonic kinks with the approximately sinusoidal envelope
with the “magic” wave number, which were revealed in lattices with different interatomic
potentials with hardening anharmonicity [11, 12, 13]. It is worth mentioning that the trapping
by potential hill of the quasiparticle with negative effective mass is similar to the formation of
intrinsic localized mode (discrete breather) above the phonon band in a crystal with repulsive
anharmonicity [14].

Electron, exciton or hole can also be localized by the discrete breather in the lattice with
realistic asymmetric anharmonic potential. In the case of stationary or slowly moving discrete
breather (DB), there is a kink-like distribution of static or quasi-static lattice displacements,
caused by the asymmetry of the interparticle potential [15] (see also [16]). In the lattice
with realistic interatomic potentials, these displacements cause local lattice stretching and the
formation of local potential well for the electron (or exciton), produced by the discrete breather.
This in turn results in the trapping of slowly-moving electron (or exciton) by DB with its
localization below the lower edge of the conduction (or exciton) band. The hole can be trapped
by the stationary or slowly-moving DB above the valence band, below the Fermi level. The
papers [17, 18] consider different mechanisms of electron localization by DB, not related with
static stretching of the anharmonic lattice.

2. The model
We consider the following semiclassical Hamiltonian, which describes the interaction of classical
longitudinal phonons with a quantum quasiparticle (electron, exciton or hole) in 1D lattice with

nearest-neighbor interactions between atoms (nuclei) and between corresponding quasiparticles
(the tight-binding model):

H = Hlat + Hel + Hel—p}w (1)
1
Hyy = ;[ml)i + U(un - un—l)]a (2)
H, = Z[an;an — Ja) (ant1 + an—1)], (3)
n
Hel—ph = - Z(un - Un—l)[gla;kzan - QQCL:;(CM-H + an—l)]a (4)
n

where u,, is atomic displacement from the equilibrium position in the lattice site n, M is atomic
mass, p, is the momentum conjugate to u,, U(r) is the (nonlinear in general) interparticle
potential, where r = u,, — u,,_1 is relative particles displacement, a,, is the complex amplitude of
the quasiparticle in the lattice site n such that |a,|? gives the probability to find the quasiparticle
at this site, Fy is energy in the center of the conduction band, 4J gives the width of the
conduction band, g; and gy are (positive) constants of the electron-phonon interaction, which
determine the shift of the center and the change of the width of the conduction band caused
by lattice strain (1D deformation) w, — u,—1 = dOu/0xz, d is lattice period. The model
of the electron-phonon interaction with the two parameters ¢g; and gs, eq. (4), combines
the deformation-potential model for nonpolar semiconductors [19] with the Su-Schriffer-Heeger
(SSH) model for quasi-1D conducting systems [20] (with the parameters g and go, respectively).
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From equations (1)-(4) we obtain the corresponding equations of motion for a,, and w,:

tha, = ann - J(an—l—l + an—l) - (un - un—l)[glan - 92(an+1 + an—l)]a (5)
. 0
Mii, = —aT[U(Un — Un—l) - U(Un-',-l - un)] + [gl(|an|2 - |an—1|)2
—g2(an(ant1 + an—1) — ap_1(an + an—2))]. (6)

Both at the lower and upper edges of the quasiparticle band, one has |a,| ~ |a,+1| and
the amplitudes a,, at the nearest-neighbour sites are in phase at the lower edge and are anti-
phase at the upper edge of the band Therefore at both edges the effective Hamiltonian of the
electron-phonon interaction H ol ph can be written in the following universal form (cf. eq. (4)):

Heelf—fph = ff Z — Un— 1 a, nGn, (7)
where gif I = gy + 2¢5, and sign plus (minus) corresponds to the upper (lower) edge of the

quasiparticle band. The corresponding equations of motion for a, and u, take the following
form:

ihan = Eoan — J(an41 + an-1) — 9577 (un — un_1)an, (8)
. 0 e
Miiy, = _W[U(un —Un-1) = U(tunt1 —up)] + g ff(|an|2 - |an—1|)2' 9)

In the continuum approximation with respect to the quasiparticle wave function ¢ = ¢ (x,t),
equations (8) and (9) can be written as:

o 0? e
iy = Bxy & Jd* o f — g (un — una )0, (10)
3 0 eff 0102
Mi, = —a—un[U(Un —Up—1) = U(tng1 — up)] + giffd%v (11)

where ¥(z) = a, and () = (—1)"a, at the lower and upper edges of the quasiparticle band,
respectively, x = nd, Ex = Fy+ 2J. Equation (10) for the quasiparticle wave function close
to the upper edge of the band corresponds to the anti-continuum limit, which is known in the
envelope-function approach to the short-wavelength lattice and spin dynamics, both linear and
nonlinear, see, e.g., Refs. [21, 22].

3. Results and Discussion
Below we list the realistic nonlinear interatomic potentials U(r), which are known to support
the propagation of supersonic kinks:

1 1
U(r) = §K27“2 — §K37“37 K3 >0, (12)
1 1 1
U(T) = §K27“2 — §K37“3 + ZK4T47 K?) > 07 K4 > 07 (13)
1 2
U _ _ , 14
(r) 6((1 T2 (14 7“)6) (14)
1
U _ 15
M= (15)

which are the a-Fermi-Pasta-Ulam (a-FPU), a-g-FPU, Lennard-Jones (LJ) and repulsive
Coulomb (RC) potentials, respectively. In all these interparticle potentials, the part of
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the potential, which describes contraction of the lattice, is always more steep than the
part, describing stretching of the lattice, which ensures the possibility of propagation of the
compression supersonic kinks. It is worth mentioning that the a-8-FPU potential is also realized
for the intermediate relative displacements r in the Lennard-Jones and repulsive Coulomb
potentials.

3.1. Trapping of quasiparticle by supersonic kink

To describe a supersonic kink traveling to the right in the one-dimensional chain with the
a-p-FPU interatomic potential, we use the following ansatz with the “magic” wave number
27/3d, which was introduced in Refs. [11, 12] and was successfully applied for the description
of ultradiscrete supersonic kinks in repulsive Coulomb lattice in Ref. [13]:

A 27
Un = Un—1 = =5 (1+ COS(3d (nd —Vt)) (16)
for —m < (27/3d)(n—V't) < m, and up, —u,—1 = 0 otherwise, where A > 0 is the kink amplitude
of relative particle displacements, V' > /K5/Md is supersonic velocity of the kink, \/Ko/Md
is a speed of sound in the system. Localization of such nonlinear excitations increases with its
velocity V', when the inverse localization length k. of the lattice excitation is determined by
its velocity and follows the equation [11]:

MV?k}, = 4Ky sinh? (kyq,d/2). (17)

The kink velocity V' grows in the large-amplitude limit (in 8-FPU lattice) as [12]

3 \/3K2 + (45/16) K4 A (18)

L M
Supersonic kink with the pattern of relative displacements (16) can be considered as a discrete
limit of the kink in the Korteweg - de Vries or modified Korteweg - de Vries equation.
Following the known solution of Schrédinger equation for localization in the 1D potential
well which can be considered as perturbation [23], with the use of equation (10) we obtain the
quasiparticle inverse localization length x4, > 0, given by the integral over the discrete breather
width of the deformation potential (7), in which we substitute w,, — u,_1=d0u/0z:

—+00
Kgp = |”;Lgp| /_ . 977 (dou /o) dz = %giﬁ dA (19)

for gif 7> 0, where Imgp| = h?/(2d%J) is the modulus of the negative quasiparticle effective
mass at the top of the band. From equation (19) follows that quasiparticle localization length
decreases with the increase of kink amplitude and velocity, and the localization length is much
larger than lattice period in the case of adiabatic electron dynamics, for V < 2Jd/h.

With the use of equations (10) and (19), we obtain the energy E of the moving with group
velocity V' quasiparticle, localized above the upper edge of the band F :

IMgp|  erf 2 |Magpl: o
E=F — dA)* — —=V 20

+ + 2h2 (g+ ) 2 ; ( )
where V = 0F/(h0q) = 2Jdsin(qd)/h = 2Jd(m —qd)/h is the group velocity of the quasiparticle
with the wavenumber ¢ close to the Brillouin zone edge 7 /d, which coincides with the supersonic
kink velocity V in eq. (16). It is worth mentioning that the shift —|mg,|V?/2 of the energy of
the moving quasiparticle in equation (20) is consistent with the transformation of wave function
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of the particle with a given mass, moving with respect to laboratory frame [23]: the mass is
effective and negative in equation (20). According to equation (19), the finite quasiparticle
velocity V' does not affect the localization condition, and the energy of the moving localized
quasiparticle can enter the band, for AE < 0 and E < E, since the latter is determined in the
laboratory frame.

We can compare the inverse localization length (19) and energy (20) of the moving localized
quasiparticle with the inverse localization length xpp > 0 and energy hwpp of the moving
discrete breather, localized above the phonon band in the a-8-FPU lattice, see, e.g., [14, 16, 24]:

kpp = \J6K4/Ky — 8(K3/K2)2App/d, (21)
3Ky K?? 2 [mpn] o
- max 1 7 79 - T 5 5 22
2h | M
mph = _ﬁ E, (23)
K,

maxr T 2 VRl 24
w o (24

where App is displacement oscillation amplitude in the discrete breather, m,, is effective
"phonon mass” at the top of phonon band with the dispersion w = 2./Ks/M sin(qd/2),
1/myn = 0%w/0q?/h, and V = dw/dq. Similar to the case of moving quasiparticle, equation
(20), frequency of the moving discrete breather can, in principle, enter phonon band, when
WpB < Wmnaz, See equation (22).

3.2. Trapping of quasiparticle by discrete breather

Discrete breather in the lattice with realistic asymmetric interparticle potential U(r) causes
local static deformation (stretching) of the lattice [15]. For instance, in the a-8 FPU chain
with 3K, K> > 4K2, we have the following expression for the local static stretching deformation
(Ou/0x)s [16]:

K3

(Ou/0n) s = <%6(un ) f00) =

(tn = 1)) > 0, (25)
where (u, — un_l)QD p denotes square of relative particle displacements in the discrete breather
and angle brackets denote time averaging (one has ((u, —un_1)%5) ~ A% 5 , cf. equations (21)
and (22)). This relation shows that discrete breather produces local energetic expansion of the
lattice with realistic asymmetric interatomic potential, which is caused by atoms with locally
enhanced vibrational energy, forming discrete breather [16].

With the use of equations (10) and (25) with substitution w, — u,—1=d(du/dx)st, we obtain
the inverse localization length g, > 0,

_ 2mgp K3 oy
Fap = =32 g, 9-

((un — un-1)hp) DB, (26)

and energy F of the quasiparticle trapped below its conduction band where is possesses positive
effective mass mgp:

2m, K3 m
E=E_ — @226 (4, —u, 1)bp)Ane)? + 2V (27)

h Ky 2
where A\pp = 1/kpp is localization length of the discrete breather, see equation (21). The
trapping can be realized for gif f =g1 — 2g2> 0. Since discrete breathers are stationary or
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slowly-moving nonlinear lattice excitations, kinetic energy of the moving quasiparticle cannot
significantly affect the trapping condition (26), but the energy of the moving quasiparticle can,
in principle, enter the band, for £ > E_, cf. equations (20) and (22).

In p-doped semiconductor, a hole can be trapped by the stationary or slowly-moving discrete
breather. Since the sign of the deformation potential (7) for holes is opposite to that for electrons
[19], the hole can be trapped above the upper edge of the valence band. This property reflects
the particle-hole symmetry in the quasiparticle trapping.

4. Conclusions

We describe the possibility of electron trapping above the top of its tight-binding conduction
band, where it possesses negative effective mass, by supersonic kink in a molecular chain with
realistic interatomic potentials and electron-phonon interactions. The localization length of
the electron wave function is in general much larger than lattice period for adiabatic electron
dynamics and decreases with the velocity of the ultradiscrete supersonic kink. We consider
electron trapping by ultradiscrete supersonic kinks with the approximately sinusoidal envelope
with the “magic” wave number, which were revealed in lattices with different interatomic
potentials with hardening anharmonicity. Electron or hole can also be trapped by discrete
breather (intrinsic localized mode) in the lattice with realistic asymmetric anharmonic potential.
The local quasi-static strain, produced by the stationary or slowly-moving discrete breather in
the lattice, can trap the electron (or hole) with its localization below the lower edge of the
conduction (or above the upper edge of the valence) band.
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