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Abstract. We investigate a system consisting of strongly correlated localized and itinerant
electron states mixed by optical vibration. The linear vibronic interaction causes the softening of
active optical mode and it may induce a structural instability. The modification of renormalized
phonon frequency by the gap in the energy of itinerant electrons in the superconducting
phase has been established. The disposition of the electron spectrum and chemical potential
influences substantially the corresponding effect. It is demonstrated that the presence of van
Hove singularity in the center of itinerant electron band introduces qualitative changes into the
superconductivity-induced shifts of phonon frequency.

1. Introduction
The mutual influence between superconductivity and phonon dynamics, including structural
instability, has been an object of research for many years, see review [1] for earlier publications
in this field. A number of effects related to the phonon dynamics, structural instabilities and
symmetry breaking present in high temperature superconductors [2, 3] have been investigated
intensively both experimentally and theoretically. In particular, various aspects of phonon self-
energy effects caused by superconductivity were analyzed in Refs. [4, 5, 6, 7].

In the present contribution we study the changes in phonon frequency, renormalized by
the vibronic mixing of itinerant and strongly correlated localized electron states, due to the
electron pairing gap in the spectrum of itinerant electrons in the superconducting phase. In
the absence of superconductivity, the model was examined in Ref. [8] and the special case of
such a scheme was considered as a possible reason for the tetragonal-orthorhombic transition in
La2−xMxCuO4 [9, 10]. The vibronic hybridization of electron states has been accepted as quite
general mechanism for structural (ferroelectric) phase transitions [11, 12].

2. Basic equations
We use the following model Hamiltonian for the electron-phonon system:

H = H0 +Hel−ph , H0 = Hel +Hph , Hel = Hl +Hi , (1)

Hl =
∑
j

(
ε1
∑
s

Xss
j + ε2X

22
j

)
, (2)
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Hi =
∑
k

∑
s

ε̃(k)a+ksaks +∆sc

∑
k

a+k↑a
+
−k↓ +∆∗

sc

∑
k

a−k↓ak↑ , (3)

Hph =
∑
q

h̄ωq

(
b+q bq +

1

2

)
, (4)

Hel−ph = N−1
0

∑
k

∑
j

∑
s

∑
q

g(q)ei(k−q)rja+ks

[
X0s

j + η(s)X−s2
j

] (
b+−q + bq

)
+ h.c. . (5)

Here Hel is the Hamiltonian of electron subsystem containing localized strongly correlated
electrons (Hamiltonian Hl) and itinerant superconducting band electrons (Hamiltonian Hi), Hph

is the Hamiltonian of phonon subsystem and Hel−ph describes the vibronic mixing of localized
and itinerant electron states. In the case of localized electrons the one-electron annihilation and
creation operators have been replaced by the Hubbard operators: djs = X0s

j + η(s)X−s2
j and

d+js = Xs0
j + η(s)X2−s

j where j is the index of lattice site, s is the spin index and η(↑, ↓) = ±1.
In the Hamiltonian (2), ε1 = εd − µ and ε2 = 2εd +U − 2µ where εd is the energy of a localized
electron without Coulomb correlation, U/2 is the energy of Coulomb interaction between two
electrons per one spin direction and µ is the chemical potential. In the Hamiltonian (3),
ε̃(k) = ε(k) − µ, ε(k) is the energy of an itinerant electron in the normal state and ∆sc is
the s-wave superconductivity gap. The Hamiltonian (3) can be diagonalized by means of the
Bogoliubov-Valatin transformation aks = ukAks + v∗kA

+
−k−s.

For the energy of normal-state itinerant electrons we use the two-dimensional spectrum
ε(kx, ky) = −2t[cos(kxa) + cos(kya)], where a is the constant of square lattice. The bottom
of the energy band εmin = −4t and the top of the band εmax = 4t. The corresponding density of
electron states ρ(ε) reflects the presence of van Hove singularity in the center of the band, see
figure 1.

Figure 1. The density of states for the energy band of itinerant electrons with t = 0.25 eV .

3. Renormalized phonon frequency
One can find the renormalized squared phonon frequency by applying the Shrieffer-Wolff
transformation [13], generalized for the case of phonon-mediated dynamic hybridization between
itinerant and localized electron states, to the Hamiltonian (1).

We will consider the disposition of electron states where the band of itinerant electrons is
located between the lower Hubbard (LH) and upper Hubbard (UH) levels, i.e. εd < εmin and
εd + U > εmax, see figure 2. Note also that such a set of electron states is roughly similar
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to the effective electron spectrum in copper-oxide systems [14, 15] stemming from the Emery
model [16, 17]. Chemical potential intersects the conduction band of itinerant electrons. In what
follows, we neglect the contributions containing AA, A+A+, X02, X20, A+

s As′ and Xss′ if s ̸= s′

as well as XjXj′ if j ̸= j′. Then, by introducing the average numbers of elementary excitations
and electrons, one obtains for the squared phonon frequency renormalized by electron-phonon
interaction

Figure 2. The configuration of electron states used.

Ω2
q = ω2

q +
2 |V (q)|2

N0

×
∑
k

{
1

2

[
1 +

ε̃(k)

E(k)

] [
ν(k) (2n0 + n1)− n1

E(k)− ε1
+

2n2 − ν(k) (n1 + 2n2)

ε2 − ε1 − E(k)

]

+
1

2

[
1− ε̃(k)

E(k)

] [
ν(k) (2n0 + n1)− 2n0

E(k) + ε1
+

ν(k) (n1 + 2n2)− n1

ε2 − ε1 + E(k)

]}
, (6)

where

V (q) = g(q)
√
2ωq/h̄ , E(k) =

√
ε̃2(k) + |∆sc|2 ,

ν(k) =
⟨
A+

ksAks

⟩
H0

, n0 = N−1
0

∑
j

⟨
X00

j

⟩
H0

,

n1 = N−1
0

∑
j

∑
s

⟨
Xss

j

⟩
H0

, n2 = N−1
0

∑
j

⟨
X22

j

⟩
H0

. (7)

It has been assumed that εmin − εd ≫ h̄ωq and εd + U − εmax ≫ h̄ωq in Eq. (6).
In the case T = 0 the average numbers ν(k) = n0 = n2 = 0, n1 = 1 and we have for the

squared frequency (6) the expression

Ω2
q = ω2

q − 2 |V (q)|2

N0

∑
k

{
1

2

[
1 +

ε̃(k)

E(k)

]
1

E(k)− ε1
+

1

2

[
1− ε̃(k)

E(k)

]
1

ε2 − ε1 + E(k)

}
, (8)

Further, we will analyze the superconductivity-induced shift of squared phonon frequency at
zero temperature

∆Ω2

ω2
=

Ω2 − Ω2
n

ω2
, (9)

where ω ≡ ωq, Ω ≡ Ωq and Ωn is the value of Ω if ∆sc = 0.
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4. Numerical results and discussion
4.1. Density of electron states with van Hove singularity
By introducing the integration over the energy of itinerant electrons we can represent the squared
phonon frequency (8) in the form

Ω2

ω2
= 1− χ

4t∫
−4t

G(ε)
{
1

2

[
1 +

ε̃(ε)

E(ε)

]
1

E(ε)− ε1
+

1

2

[
1− ε̃(ε)

E(ε)

]
1

ε2 − ε1 + E(ε)

}
dε , (10)

where

χ =
2|V |2

ω2π2t
, G(ε) = h−1

+ (ε)K

(
h−(ε)

h+(ε)

)
, h±(ε) = 1±

∣∣∣∣ ε4t
∣∣∣∣ , (11)

and K(m) is the complete elliptic integral of the first kind.
The superconductivity-induced shifts ∆Ω2/ω2 as the functions of chemical potential position

are shown in figures 3, 4 for various dispositions of Hubbard levels. In the figures the energy of
lower Hubbard leval εd is fixed and the energy of the higher Hubbard level εd + U is tuned by
the variation of U .

In figure 3 the value U = 3 eV corresponds to the symmetric location of the Hubbard levels
with regard to conduction band. In this case the curve ∆Ω2/ω2 vs µ is also symmetric, see thick
broken line in figure 3. The increase of U in figure 3 introduces moderate asymmetry for the
location of the Hubbard levels. As a result the strong dependence ∆Ω2/ω2 vs µ appears in the
center of conduction band (µ = 0) related to the presence of van Hove singularity accompanied
by the asymmetry of the function ∆Ω2(µ) in the domains µ < 0 and µ > 0. One can observe in
figure 3 that ∆Ω2(µ) > 0, i.e. superconductivity induces here the hardening of phonon dynamics
which is, however, suppressed in the region µ > 0 by the increase of U . If the chemical potential
approaches the edges of conduction band, the effect of hardening increases.

Figure 3. The dependence of ∆Ω2/ω2 on µ for U = 3 eV (thick broken line), 3.25 eV
(thick dotted line), 3.5 eV (thin broken line), 3.75 eV (thin dotted line). Parameters: χ = 1,
t = 0.25 eV , εd = −1.5 eV , |∆sc| = 0.02 eV .

The dependence of ∆Ω2/ω2 on the position of chemical potential in the case of the larger
values of U is depicted in figure 4. Here the rapid fall of ∆Ω2/ω2 if the increasing µ passes
through the van Hove singularity leads to the softening of phonon dynamics in the domain
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µ > 0, see especially thin full line and thin chain line. The softening may appear also if the
chemical potential approaches the top of the band of itinerant electrons (thin full line and thin
chain line in figure 4).

One can follow the tendencies demonstrated in figures 3,4 also in the functions ∆Ω2/ω2 vs
U for various values of µ sown in figure 5. In particular, one can distinguish the regions of the
values of µ where ∆Ω2/ω2 increases or decreases with the increase of U .

Figure 4. The dependence of ∆Ω2/ω2 on µ for U = 4 eV (thick full line), 5 eV (thick chain
line), 8 eV (thin full line), 13 eV (thin chain line). For the rest of the parameters see figure 3

Figure 5. The dependence of ∆Ω2/ω2 on U for µ = −0.4 eV (thin broken line), −0.1 eV (thin
full line), −0.05 eV (thin chain line), 0.05 eV (thick chain line), 0.1 eV (thick full line), 0.4 eV
(thick broken line). For the rest of the parameters see figure 3

4.2. Constant density of electron states
To illustrate more precisely the role of van Hove singularity in the superconductivity-induced
shift of phonon frequency, we will consider for the comparison a model where the density of



6

1234567890

Jahn-Teller Symposium  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 833 (2017) 012018  doi :10.1088/1742-6596/833/1/012018

itinerant electron states ρ = const. In this case Eq. (10) must be replaced by the expression

Ω2

ω2
= 1− κ

εmax∫
εmin

{
1

2

[
1 +

ε̃(ε)

E(ε)

]
1

E(ε)− ε1
+

1

2

[
1− ε̃(ε)

E(ε)

]
1

ε2 − ε1 + E(ε)

}
dε (12)

with κ = 2|V |2ρ/N0ω
2.

Figure 6. The dependence of ∆Ω2/ω2 on µ for U = 3 eV (thick broken line), 3.25 eV (thick
dotted line), 3.5 eV (thin broken line), 3.75 eV (thin dotted line) in the case of constant density
of states. Parameters: κ = 1, εmin = −1 eV , εmax = 1 eV , εd = −1.5 eV , |∆sc| = 0.02 eV .

Figure 7. The dependence of ∆Ω2/ω2 on µ for U = 4 eV (thick full line), 5 eV (thick chain
line), 8 eV (thin full line), 13 eV (thin chain line) in the case of constant density of states. For
the rest of the parameters see figure 6
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Figure 8. The dependence of ∆Ω2/ω2 on U for µ = −0.4 eV (thin broken line), −0.1 eV (thin
full line), −0.05 eV (thin chain line), 0.05 eV (thick chain line), 0.1 eV (thick solid line), 0.4 eV
(thick broken line) in the case of constant density of states. For the rest of the parameters see
figure 3

For the constant density of itinerant electron states, the superconductivity-induced shifts
∆Ω2/ω2 vs chemical potential position calculated on the basis of Eqs. (12) and (10) are shown
in figures 6, 7 for various values of U . As expected, the rapid change of ∆Ω2/ω2 if chemical
potential passes through the middle of the band of itinerant electrons is absent in the present
case. The hardening of phonon frequency induced by superconductivity is suppressed by the
increase of U more substantially in the domain µ > 0. If chemical potential approaches the top
of the band of itinerant electrons the effect of softening appears for sufficiently large values of U
(thin full line and thin chain line in figure 7). Figure 8 demonstrates the decreasing dependence
of ∆Ω2/ω2 vs U for the various positions of chemical potential (c.f. figure 5).

5. Summary
• The impact of electron energy gap formation in the superconducting phase on phonon frequency
renormalized by the vibronic mixing of itinerant and localized electron states has been studied.
• If the location of the lower and upper Hubbard levels with regard to the band of itinerant
electrons is symmetric or weakly asymmetric, superconductivity induces the hardening of phonon
dynamics. The dependence of the effect on µ is stronger near the edges and near the center of
conduction band.
• If the location of the Hubbard levels is sufficiently asymmetric, the softening of phonon
dynamics appears in certain regions of the chemical potential position.
• For the constant density of electron states the strong dependence of superconductivity-induced
shift of phonon frequency on the chemical potential position near the center of conduction band
disappears because in this case the van Hove singularity is absent in the center of conduction
band.
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