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Abstract. Shape of optical spectrum of vibronic transition in one-dimensional model taking into 

account dynamical pseudo-Jahn-Teller effect was studied. Numerical calculations at large values 

of interaction parameter revealed periodic character of the envelope. This was interpreted as 

manifestation of Fermi resonance. 

1.  Introduction 

Let’s consider a vibronic system with non-degenerate ground state and two nearby excited states, where 

excited states interact through low-symmetry vibrations. In harmonic and linear approximations in respect 

to interaction the vibrational movement of such system in ground state and excited state is described by 

the following Hamiltonians, respectively: 
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where Eg and Ee are average energies of electrons in these states, and  
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Shape of the optical spectrum corresponding to vibronic transitions from ground state to excited 

electronic states is determined by the function 
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Here M is operator of interaction of optical electrons with light, and brackets < > denote statistical 

averaging over vibrational states of HL. 
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Due to averaging odd powers of ξ vanish, so in our diabatic representation [1] the density distribution 

function F(E) is diagonal: 
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Consequently, 
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Calculating F(E) according to the equation (4) we meet difficulties well-known in theory of dynamical 

Jahn-Teller effect which do not permit to find explicit expression. Therefore we have to use various 

approximations. However, moments of F±(E) are calculated exactly. First 7 of them are: 
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Here 
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Unfortunately it is practically impossible to restore the form of F(E) from its first moments. This 

becomes evident when we calculate F(E) in semi-classical approximation that holds for strong vibronic 

interaction: 
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Equation (9) implies that both polarizations of the semi-classical spectrum have a gap in the range 

 ,E    and a singular point of type  
1 2

E


  at one of its boundaries. 

We also note that at 0   the problem is equivalent to the one of singlet-singlet transition: equation 

(4) turns into well-known Lax equation: 
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and the semi-classical spectrum is given by Gaussian: 
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2.  Interaction with one vibration 

Now we return to quantum-mechanical calculations. Let’s find F(E) in case of interaction with only one 

vibration. In this case the calculation is much simpler and quantum effects are more clearly manifested. 

The problem is to find solutions for the following vibrational equation for excited electronic states: 
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Here 
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In the basis of eigenstates of vibrational Hamiltonian HL the equation (13) splits into two equations 

with tridiagonal matrices: 
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Here G


  and  
22

22D k S   are dimensionless parameters of splitting and vibronic 

interaction, and ν is quantum number of eigenstate of HL + HeL: 
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Depending on whether ν is the eigenvalue of the first or of the second equation, the eigenvector is 

expressed as 
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where 0 , 1 , 2 ,...  are eigenvectors of the Hamiltonian HL: 

 

L

1
,

2

0,1,2,...

n

n

H n E n

E n

n





 
  

 



 (19) 

From (15) it is evident that stationary states of the Hamiltonian HL + HeL are divided into two classes. 

Consequently, there exists an operator with two eigenvalues, which commutes with the Hamiltonian. In 

the coordinate representation, its effect can be determined by the following expression: 
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The eigenvalues of this operator are 1 and -1, and the eigenvectors are vectors, in which one of the 

components is even and the other odd function of  : 
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where    g g   and    u u    . 

Due to tridiagonality of energy matrices in (15) the amount of computations and necessary storage are 

not excessive, allowing computations at large values of D and G, i.e. in the range of transition to semi-

classical spectrum. Further economy of storage and computation time appears at T=0, then transition 

occurs only from the vibrational ground state. In this case 

    
2

00 ,F E E E E
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and we may compute only one component of eigenvectors 0 0c     . 

As a result, the required computer resources remain within reasonable limits while taking into account 

several thousands of vibrational states of the Hamiltonian HL, which in turn allows working with the 

values of D and G up to several hundred. 

Numerical calculations were carried out on a computer M 4030 using the QL-method with shift [2]. 

The number of elementary rotations appeared to be slightly below N
2
, where N is the order of the matrix, 

and time to perform one rotation - about 2 ms. Therefore, in an hour we can calculate the spectrum, taking 

into account around thousand vibrational states of HL. 
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3.  Computed spectra 

In the literature already exist results of numerical solution of the equation (13) for small D and G [1]. So 

we stopped at the large values of D and G, examining the way of reaching the semi-classical limit. It is 

well known that the envelope of the line spectrum corresponding to the vibronic transition to non-

degenerate electronic state (the case of Γ=0 in our model), even when taking into account only one 

vibration, already at D = 5 is well described by the semi-classical expression (Gaussian curve). But as can 

be seen from figures 1 and 2, in this model, despite the high value of D, the calculated spectrum is clearly 

different from the semi-classical spectrum. In the region E < -Γ semi-classical approximation works quite 

well. However, in the region E> Γ clear fluctuations of the intensities of the absorption lines are 

noticeable. Nature of mentioned fluctuations may be well understood in terms of adiabatic potentials, if 

we take into account mixing of vibrational states of close energies that belong to different electronic 

states, i.e. Fermi resonance. Indeed, in adiabatic representation that diagonalizes HeL:  
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The Hamiltonian HL consists of two parts - kinetic and potential: 
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The latter does not change with the transition to the adiabatic representation, and the first takes the form 
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To summarize, in adiabatic representation the vibrational Hamiltonian of excited electronic states can 

be represented as the sum of three parts - the kinetic, potential, and mixing: 
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Usually when calculating the adiabatic potentials the third member of W is neglected. Also kinetic and 

mixing parts of the Hamiltonian are omitted. All this corresponds to semi-classical approximation. 
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We will, however, proceed differently: we consider T + W as the unperturbed Hamiltonian, and K as a 

perturbation. Note that both of these operators, as well as the transformation matrix O commute with the 

operator P. Consequently, 

 ' ,TP OPO P   (29) 

i.e. similarly to diabatic representation in the adiabatic representation stationary states are also described 

by vectors with components of different parity. As the Hamiltonian T + W is diagonal and K contributes 

only in the second order of perturbation theory, in the adiabatic representation one of the two components 

predominates over the other. The second component is significant only when energies of stationary states 

of upper and lower potentials are close. 

 

 

 

Figure 1. Shapes of functions  0F E and  0F E  of the absorption spectrum of the two polarizations. 

2

2 4,S    semiclassical approximation. 

From the shapes of the potentials it is clear that most of the spectrum is located in two areas, 

respectively, adjacent to E   from the left, and E    from the right. In the first of them, the 

transition occurs to high levels of the lower potential. Therefore, the spectrum there is well described by 

the semiclassical approximation. The only exception is a neighborhood of the upper barrier point 

E   , where it is essential to take into account the kinetic energy operator T. 

In the second region E   along with levels of lower potential exist lower levels of the upper 

potential, into which the probability of transition from the ground vibrational state of HL is high. The 

distance between these levels is several times greater than the distance between the energy levels of the 

lower potential that is approximately equal to 2  (see the upper right side of figure 3). If we take into 

account that the transition can only occur into vibrational states that are even in respect to ξ, strong 

absorption lines should appear in  F E  at frequencies close to even stationary states of the upper 

potential, and in  F E  respectively, close to odd ones. Due to the mixing caused by the operator K 

these lines must be accompanied by satellites, corresponding to transitions into nearby states of opposite 

parity of the lower potential. According to Fermi resonance the intensity of these lines should increase 

with diminishing distance between the respective levels and the levels of the upper potential. All this is 

indeed observed in our calculated spectrum. 
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In order to obtain quantitative results in the adiabatic representation one should first solve the 

Schrodinger equation with the Hamiltonian T + W for high vibrational levels of the lower potential, which 

can be practically realized only by the WKB method. Such calculations we did not perform, because in 

the given model they are more complex than the calculations described above and are only of auxiliary 

importance. Nevertheless, using the simplest version of this method, we calculated positions of the energy 

levels of the unperturbed Hamiltonian T + W in the area of the upper potential. Results of these 

calculations are shown in figure 3.  

4.  Optical spectra of dimers 

A problem similar to that considered in this paper arises in the theory of optical spectra of dimers, but 

there one must also take into account the interaction with another, totally symmetric vibration. This 

vibration interacts equally with both excited electronic states and does not mix them. Therefore, its effect 

is reduced to the convolution of the density distribution function  F E  with another density distribution 

function  0F E  calculated at the same D, but at G=0 (equation (10)). In our model (one totally 

symmetric vibration, T=0)  0F E  is given by the Poisson distribution: 

    0

0

 .
!

n

n

D
F E E n

n
 





   (30) 

Calculation and analysis of such spectra at moderate D and G was performed in the works [1]. It is 

easy to obtain the corresponding spectra also at the values of D and G we used, however, even without 

calculations it is clear that the resulting spectra are strongly smoothed. Taking into account many 

vibration frequencies and the finite temperature changes the spectra towards the same direction. 

Therefore, the conditions for observing manifestations of Fermi resonance in real spectra of dimers are 

not particularly favorable. 

This work was first published in Russian as [3]. 

 

 

 

 

(a) 
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Figure 2. Shapes of functions  0F E and  0F E  of the absorption spectrum of the two polarizations. 

2

2 4,S    quantum calculation.  
2

2 400 ,S  10    (a);  
2

2 100 ,S  5    (b). 

 

 

Figure 3. Adiabatic potentials in the ground 

(U) and excited (W) electronic states. The 

upper right corner shows the positions of 

energy levels of potentials of the excited 

electronic state, calculated by the WKB 

method.  
2

2 4,S    
2

2 100 ,S  5   . 

 

 

(b) 
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