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Abstract. The final day of the Hot Quarks 2016 conference was focused on the discussions of
the initial stages of colliding nuclei and hadrons. In this conference proceedings we give a brief
overview of a few selective topics discussed at the conference that include latest developments
in the theoretical description of the initial state towards understanding a number of recent
experimental results from RHIC and LHC.

1. Introduction

In the standard model of heavy ion collisions, by “initial stages”, one commonly refers to two
Lorentz contracted sheets of saturated partonic matter that collide to form an ensemble of highly
occupied gluon fields. This initial stage undergoes a pre-equilibrium evolution and eventually
evolves to a phase describable by viscous hydrodynamics. Many aspects of the standard model
of heavy collisions have been verified by a number of experimental observations. One powerful
observable in this context is the two-dimensional (2D) di-hadron correlation function (per-
trigger-particle associated yield distribution) expressed in terms of relative pseudo-rapidity (An)
and azimuthal angle (A¢) of the emitted particles as shown in the left panel of Fig.1. Such
correlations include two major components, the di-jet and the ridge. The short range di-jet
correlations give rise to a narrow near-side peak at (An = 0, A¢ = 0) but can extend over the
entire An range on the away side (A¢ ~ 7) whereas the long-range ridge-like correlations can
persist up to large An on both near and away sides.

The production of back-to-back di-jets are constrained by momentum conservation and the
strength of such correlations gets diminished when going from peripheral to central events [1].
Such observation is a consequence of the well-known scenario of jet-quenching, a key signature to
support the formation of a strongly correlated Quark Gluon Plasma (sQGP) in A+A collisions.
On the other hand, the strength of the long range ridge-like correlations are often characterized
by the Fourier coefficients Va, obtained after the harmonic decomposition of the correlation
functions integrated over An. These two particle Va, coefficients can be related to single-
particle azimuthal anisotropy harmonics v,, a possible source of which is the hydrodynamic
expansion of the medium in response to initial spatial anisotropy that is nearly boost-invariant,
once again consistent with the scenario of sSQGP formation in A+A collisions.

For years collisions of small systems such as p+p and p+A have been providing baselines
for measurements in A+A collisions. Such consensus has been strongly challenged by a number
of striking recent measurements that resemble features commonly observed in A+A collisions.
As shown in Fig.1, the long range ridge like structure seen in peripheral Pb+Pb collisions also
appears in the high multiplicity events in p+p and p+Pb collisions for hadrons with 1<pr<3
GeV.
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Figure 1. Di-hadron correlations in relative pseudo-rapidity and azimuthal angle in peripheral Pb+Pb
and high multiplicity p+Pb and p+p collisions [1-3].

2. Initial state correlations

By looking at Fig. 1 a natural question arises : does the same underlying mechanism drive
these long-range correlations in all collision systems ? From causality arguments it is known
that any form of correlation that spans over a wide range of rapidity must originate at the
early stages of collisions [4]. This makes long-range di-hadron correlations an initial state driven
phenomenon for any collision systems. However what short of initial state correlations dominate
the experimental observations could be a matter of debate. In recent years, two possible sources
of initial state correlations have been identified : 1) intrinsic momentum space correlations of
partons that survive the process of hadronization, 2) position space correlations (geometric)
of partons that are converted to momentum space correlations by the final state interactions.
In principle both should contribute to the observed experimental correlations although their
relative contribution will depend on the collision system.

In a scenario like A+A collisions where the system size and the number of produced initial
partons is large, the mean free path of a typical semi-hard parton (~ GeV) is expected to be
much smaller than the system size. Therefore, the initial-state momentum space correlations
between such partons may be destroyed due to the phenomenon of quenching. This is a
natural consequence for a system approaching thermalization and undergoing hydrodynamic
evolution in the subsequent phase [5,6]. As a result of which the azimuthal correlations of final
hadrons particularly at small transverse momentum in A+A collisions will be dominated by
hydrodynamic response to the initial state geometry caused by the position space correlations
of initial partons.

In the collisions of small systems, however, the scenario is different as the number of initial
(semi-) hard partons is small. In a typical low multiplicity event of small collision systems,
the dominant correlation will be due to initial state momentum space correlations of back-
to-back jets that escape the interaction region without loosing a fraction of their energy by
interacting with the other soft partons produced in the collision. Going to relatively higher
multiplicity events, additional multi-parton processes will start to contribute to such momentum
space correlations as a consequence of gluon saturation. Going to even higher multiplicity
events, interaction among the produced particles will lead to dilution of initial state correlations.
Eventually in the limit of very high multiplicity, when all semi-hard partons are quenched, a
complete loss of momentum space correlations will be accompanied by formation of a thermalized
medium and one will recover the picture of A+A collisions. Therefore, for a fixed size system
there may be a critical density of partons leading to a cross over from a regime dominated by
initial-sate dynamics to one dominated by final state interaction such as hydrodynamic expansion
(see Ref [7] for a detailed discussion). So far a first-principles description of a given system over
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Figure 2. (left) Ridge-like structure of the di-hadron correlations obtained in CGC-PYTHIA (CGC-
Lund) framework [10]. (Center) Distribution of gluon density around valance quarks inside a proton
constrained by HERA data [11]. (Right) Distribution of initial energy density obtained from the 3D-
Glasma initial conditions [12].

the entire regime of parton densities in a single framework is not feasible. Current theoretical
studies of the initial state therefore mainly focus in a regime where either 1) final state effects
can be neglected, e.g. to describe the systematics of di-hadron correlations in small collision
systems or 2) the initial state momentum space correlations can be neglected, e.g. to describe
the initial conditions for fluid-dynamic simulations in A+A collisions. We will discuss these
approaches in the rest of the proceedings.

3. Angular correlations in the collisions of small systems

The interesting observations in small collision systems such as p+p are made in high multiplicity
events. It is therefore necessary to understand how such events originate in the first place.
This would require an understanding of multi-particle productions in QCD at high energies
(v/s = oo,z —0). At such energies the occupation number of gluons below the saturation
momentum k; < @ in the hadron wave functions becomes large (O(1/cay)) as a consequence
of gluon saturation. In the collisions of two such hadrons, the weak coupling description of
particle production at high energies is best captured in the framework of Color-Glass-Condensate
(CGCQC). In this framework the origin of high-multiplicity events is a consequence of initial state
fluctuations that lead to rare configurations of the parton distribution in the colliding hadrons
and the mechanism of correlated n-particle production in CGC [8,9]. The same underlying
mechanism is also responsible for azimuthally collimated two particle production.

The angular collimation in CGC can be attributed to the details of the wave functions of
the colliding hadrons that lead to enhancement in the probability of finding two gluons with
similar quantum numbers and transverse momentum close to the saturation scale @),. Such
angular collimation extends over a long range in rapidity due to the boost-invariant nature
of the classical gluon fields that dominate the hadronic wave function. Such fields lead to
rapidity independent gluon production over an interval of Ay < 1/a; that can generate ridge
like structure. The systematics of such correlations in CGC have been analyzed under different
approximation schemes e.g. the glasma-graph contribution to two gluon production, Bose-
enhancement of two idential momentum partons in the projectile, spatial density variations of
partons, local anisotropy of color-domains in the target, multiple interactions of the classical
fields [4,13-23], etc. For a recent review on this we refer the reader to Ref [24].

The different sources of fluctuations and the mechanisms of multi-particle production that
lead to initial partonic correlations within the framework of CGC discussed above are well
incorporated in the phenomenological approach of the IP-Glasma model [25]. In this model
one can compute the momentum space distributions of gluons ng/ddekt after collisions



HQ16 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 832 (2017) 012013 doi:10.1088/1742-6596/832/1/012013

that contain the information of n—particle correlations. Averaged over many events, these
lead to quantities of experimental interests like two-particle azimuthal correlation functions,
multiplicity distributions, etc. However such correlations exist at the parton and in order to make
comparisons to experimental data, a realistic hadronization scheme is required. The recent major
progress in this direction has been the development of CGC-PYTHIA (CGC-Lund) model [10]
which combines the event-by-event distribution dN,/ dyd®k; from IP-Glasma and the Lund string
fragmentation of PYTHIA. CGC-PYTHIA naturally produces the probability distribution of
multiplicity P(Ng,) for charged hadrons that is consistent with the experimental distributions.
The tails of such distributions are populated by high multiplicity events (N, > 6 x (Ngp)) for
which one can calculate the 2D di-hadron correlation function as shown in Fig.2 (left). One can
clearly see the long-range® ridge like structure as seen in the experiment (Fig.1). In addition,
the CGC-PYTHIA model, purely from initial state dynamics, can also reproduce the mass
ordering of average transverse momentum (pr), > (pr), > (pr), and elliptic flow coefficients
va(m) > va(K) > va(p) at pr S 3 GeV that are often regarded as signatures of collectivity driven
by hydrodynamics [10].

4. Initial state geometry, fluctuations in heavy ion collisions
Significant amount of research in recent years has been focused on the development of fluctuating
initial conditions for A+A collisions. The commonly used Monte-Carlo models of A+A collisions
can be classified into many categories e.g. 1) the models purely based on collision geometries such
as different implementations of MC-Glauber, 2) models that combine collision geometry with
string-fragmentations such as NeXus [26], EPOS [27], UrQMD [28] and AMPT [29] 3) models
that include gluon saturation such as DIPSY [30], MC-KLN [31, 32], MC-rcBK [33] and IP-
Glasma [25]. These models provide the distributions of initial energy, entropy density, flow etc.
that can be matched to hydrodynamic simulations under certain approximations [34]. Due to a
large number of unknown parameters involved in the hydrodynamic simulations, in principle it is
difficult to directly constrain these models from the measurements in A+A collisions. However
recently a few techniques and observables have been identified. For example the studies in
Ref. [35] have demonstrated that, in the regime where non-linearities from hydrodynamics are
negligible, the correlation between vz and vy can directly constrain the correlation of e3 and
€. Such studies have largely excluded different models expect DIPSY, IP-Glasma and MC-
Glauber with binary collision scaling. Among other observables, the probability distributions of
flow harmonics P(vy,) measured by the ATLAS collaboration [36] have been found to be largely
insensitive to the hydrodynamic evolution, particularly the effects of viscosity [37] and therefore
can be directly compared to the corresponding initial state eccentricity distributions P(ey,).
Both MC-KLN and MC-Glauber models have failed to describe P(v,) data and are therefore
been largely constrained at LHC energies. In addition, recently the STAR collaboration [38] has
measured the correlation of vy with multiplicity N, from RHIC in ultra-central Au+Au and
deformed U+U collisions. Such measurements indicate that models of initial conditions with
binary collision scaling of multiplicity such as the two-component Glauber model can not describe
the trend seen in data. A good description to such data can be obtained from IP-Glasma model
which indicates that color-coherence play important role in the particle production at RHIC [39].
In this context, there have been three major recent developments for Glauber-like models
of initial conditions that include, TRENTO [40], Quark-Glauber [41, 42] and Shadowed
Glauber [43]. These improvements to Glauber initial conditions modify the two-component
model that relate collision geometry to multiplicity or energy density by including additional
coherence and lead to a successful description of ultra-central U+U data at RHIC. Recently a
p-QCD based model of initial conditions “EKRT” has been developed [37] that includes NLO

! The experimental distribution of the di-hadron correlations also includes the di-jet peak which is not present
in the current implementation of CGC-PYTHIA.
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cross section of mini-jet production using nuclear PDF, geometry of A+A collisions and an
implementation of gluons saturation. EKRT combined with viscous hydrodynamic simulations
successfully describes a large number of data including v, P(v,) at RHIC and LHC.

The IP-Glasma is the only model of initial conditions that naturally includes sub-nucleonic
fluctuations of initial energy densities. However importance of additional sources of sub-
nucleonic fluctuations in the IP-Glasma model was realized while analyzing p+A collisions [44].
In the original implementation of IP-Glasma the proton shape was assumed to be round. A
recent modification to the IP-Glasma model includes eccentric shape of protons with gluon
density distributed around three valence quarks as shown in Fig. 2(center). Such shape has
been constrained by incoherent diffractive e 4+ p data of HERA [11] and will be important for
studying light-heavy ion collisions at RHIC and LHC.

Over the past years most of the models of initial conditions have assumed boost-invarince
and have not included the full three dimensional (3D) fluctuating structure of the initial energy
density. Although such assumptions are somewhat acceptable for observables at mid-rapidity at
the LHC and top RHIC energy, at lower energies it is essential to incorporate the longitudinal
dependence of initial energy density to perform a full 341 dimensional hydrodynamic
simulations. Such calculations have been performed by initializing the hydrodynamic simulations
with inputs from UrQMD [28], AMPT [29] and EPOS [45] initial conditions. Recently, the
inclusion of longitudinal structure in Glauber like initial conditions was performed in the 3D-
Glauber model introduced in Ref [46] by combining the LeXus model [47] of scattering with
the geometry of heavy ion collisions. 3D-Glauber provides both energy density and net-baryon
density needed to perform full 3D+1 hydrodynamic simulations for the Beam Energy Scan (BES)
program at RHIC. Many CGC models of initial conditions based on kp-factorization can provide
full 3D initial energy density. In case of the IP-Glasma model, in the original implementation,
boost-invariance was assumed. Recently the rapidity dependence of the initial energy density has
been included in the IP-Glasma model (Fig.2(right)) by incorporating the JIMWLK evolution
of the classical fields in rapidity and this new implementation is referred to as the 3D-Glasma
model [12]. Among other models of initial conditions that can provide rapidity dependent
initial conditions are the strong coupling based Holographic initial conditions that include the
numerical relativity solutions to AdS/CFT to match with hydrodynamic simulations [48,49]. In
such models the transverse geometry is needed to be introduced separately, using a MC-Glauber
implementation. Such initial conditions can also be generalized to lower energies.

It must be noted that in most cases the current state of hydrodynamic modeling of A+A
collisions comes with a big caveat of directly matching of different models of initial conditions
under the assumption of instant thermalization or isotropization. For example, in the weak
coupling approach, the initial state consisting of highly occupied gluons f ~ O(é) > 1 is far
from being isotropic. However a recent work [5] demonstrates that one can use an effective kinetic
theory (EKT) description of QCD to such initial distribution after a subsequent pre-equilibrium
evolution when the occupation number becomes f < O(ai) The EKT description can then

lead the system towards isotropization that can be smoothly matched to a hydrodynamical
description when the occupancies are f ~ O(1) [5].

5. Conclusion

The study of the initial state is a continuously progressing field of research and a large number
of exciting new developments have improved our understanding of the structures of colliding
hadrons and nuclei. Recent measurements in small systems have provided many challenges
towards understanding of the interplay between initial and final state effects in different collisions
systems. A comprehensive simulation of heavy ion collisions by smoothly matching initial
conditions to fluid-dynamic simulations is very close to reality with recent progress in the
understanding of thermalization.
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