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Abstract. Key features of jet-medium interactions in heavy-ion collisions are modifications
to the jet structure. Recent results from experiments at the LHC and RHIC have motivated
several theoretical calculations and Monte Carlo models towards predicting these observables
simultaneously. In this proceedings, the recoil picture in Jewel is summarized and two
independent procedures through which background subtraction can be performed in Jewel are
introduced. Information of the medium recoil in Jewel significantly improves its description of
several jet shape measurements.

1. Introduction
The qualitative effect of jet quenching through the measurements of the jet nuclear modification
factor (RAA) is confirmed with Run1 data at the LHC [1, 2, 3]. While the RAA shows a clear
and expected trend in the medium induced effects from central to peripheral events, the energy
loss on a jet-by-jet level is not characterized. This motivated several measurements that probed
the inner-structure of jets such as jet shapes [4, 5, 6], searches for the quenched energy away
from the jet axis [7] and fragmentation functions [8, 9] to name a few. From these detailed
measurements, jets that propagate the quark gluon plasma (QGP) were perceived as getting
broader, losing energy inside the jet cone, having an increased multiplicity of low transverse
momenta (pT ) particles around the periphery of the jet and several other consistent observations
when compared to jets in pp collisions. The subjet groomed momentum fraction was recently
measured as a function of the jet pT and event centrality at CMS [10], concluding that jets were
more asymmetrically split in heavy-ion collisions as opposed to those in pp collisions.

All these aforementioned results point to quantitative features of jet quenching, hence it
is imperative that any phenomenological model describing the physics of QGP has to predict
the general behavior and trend of these observables. Currently there are several theoretical
calculations and Monte Carlo models available on the market (see [11] for a comprehensive
review). These results offer a unique way of discriminating between these models.

Jewel [12] is a Monte Carlo framework utilizing a perturbative quantum chromodynamical
(pQCD) implementation of in-medium energy loss. The latest version of Jewel is interfaced
with Pythia6 [13] and the full framework operates as follows:

• Pythia produces the di-jet hard scattering and initial state radiation

• Jewel takes these hard scattered partons and proceeds with the final state shower
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• Pythia takes over for hadronization and hadron decays

• These events are then analyzed with the Rivet [14] analysis framework

The medium in Jewel is characterized as a thermal distribution of scattering centers. The
hard scattered partons undergo microscopic interactions that are estimated with perturbative
matrix elements and the aforementioned parton shower modifications, giving rise to elastic and
inelastic energy losses. At each interaction, a recoiled parton is created and in the current
version of Jewel, propagates without any further interaction. This is a limiting case, since in
reality these recoiled partons can further interact with the medium. Detailed descriptions of the
Monte Carlo implementation in Jewel and corresponding studies are available in [12, 15].

The recoiled parton’s energy is comprised of both the collisional part due from the hard
scattered parton, and the thermal component of the scattering centers. This extraneous energy
gets clustered in along with the other particles in the event and becomes part of the jets.
Hence, when comparing data with Jewel (including recoils), a slight mismatch appears for
inter-jet observables due to the experimental implementation of the background subtraction.
Since Jewel does not simulate a full heavy ion event, the exact method utilized by different
experiments cannot be reliably implemented. However, due to the microscopic nature of the
interactions, the exact amount of background energy and momentum is easily estimated as the
thermal component of the scattering centers before interaction. Any such subtraction techniques
are only viable for infrared safe observables since the energy corresponding to the scattering
centers are before hadronization effects.

2. Background subtraction in JEWEL
The information of the scattering centers before the interaction are first included in the event
record with a separate tag, so as to not disturb the jet clustering. Simultaneously dummy
particles with very small momenta and positions corresponding to the scattering centers are
introduced to the final state particle collection. With this information, one can associate
the scattering centers involved with the corresponding jet and hence proceed with background
subtraction with either of the following methods:

• 4MomSub: Once the jet constituents are matched in position to their corresponding
scattering centers, a simple four-momenta vectorial subtraction is performed to remove
the background contribution to the respective jet.

• GridSub: A finite resolution grid is superimposed on the event confining the jet constituents
and their scattering centers in grid cells. Inside each cell, the momenta of the scattering
centers are vectorially subtracted and the jet is finally clustered with each cell as an input
pseudo-particle. For the case when cells only contain scattering centers, their momentum
is set to zero before the clustering procedure.

The 4MomSub is recommended when possible since it is closer to a true background
subtraction. The GridSub method is employed in cases when observables require the information
of jet constituents, and is very similar to experiments where the results are constrained by the
detector’s finite resolution. Detailed studies of the systematic uncertainties introduced by the
background subtraction procedures are in preparation.

3. Comparisons with data
The ratio of the track yield in annuli around the jet axis in most central PbPb collisions at
2.76 TeV compared to pp collisions is shown in Fig. 1. The CMS data points [4] are shown
in black markers while Jewel+Pythia predictions are presented in blue dotted lines where
the density is estimated with tracks and with green solid lines for density estimated with all
final state particles. Due to the partonic nature of the background in Jewel, the subtraction
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Figure 1. Differential jet shape ratio of PbPb to pp collisions comparing Jewel+Pythia
predictions with CMS data (black points). For the Monte Carlo predictions, the density
estimated with only tracks vs. using all final state particles is shown in the blue dotted and
green solid lines respectively. The data systematic uncertainties are shown in the yellow boxes
around unity.

technique is efficient when considering both neutral and charged objects in the event. The
data systematic uncertainty is presented in the yellow shaded region. The general trend of the
data is reproduced by Jewel+Pythia after subtraction using the 4MomSub method for anti-
kT R = 0.3 jets clustered with the Fastjet [16] toolkit. As expected the agreement gets better
with the data at large r when the density is estimated with all final state particles.

The Jewel+Pythia predictions for the ratios of the subjet groomed momentum fractions
in PbPb to pp collisions are compared with CMS data [10] as shown in Fig. 2. The subjet
groomed momentum fractions are estimated via the softdrop framework [17], for low (left) and
high (right) pT anti-kT R = 0.4 jets respectively in Fig. 2. The ratio of Jewel+Pythia to data
is shown in the bottom panels where the yellow shaded region represents the total uncertainty
in the data points. The systematic uncertainties in the Jewel+Pythia predictions are shown
by varying the grid resolution by a factor of two. Jewel+Pythia also reproduces the general
trend corresponding to more asymmetric jet splittings for jets in PbPb collisions at low pT and
more symmetric splittings as the jet pT increases.

4. Conclusions
Including the recoils in Jewel along with the background subtraction procedures allows the
recovery of the jet energy acquired by the medium and its response to jets. This interplay makes
Jewel capable of reproducing the qualitative trend in data related to jet structure modifications.
This new class of jet observables that probe the medium-jet interaction highlights the next era
in jet tomography in heavy ion collisions.

This work was done in collaboration with Dr. Korinna Christine Zapp. RKE thanks the
CERN theory department for its hospitality. This work was supported by Fundação para



4

1234567890

HQ16  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 832 (2017) 012004  doi :10.1088/1742-6596/832/1/0120041234567890

HQ16  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 832 (2017) 012004  doi :10.1088/1742-6596/832/1/012004

b b

b
b

b

b b
b

Datab

JEWEL+PYTHIA cell size (0.05)
cell size down (0.025)
cell size up (0.1)
anti kT R = 0.4 Jets
|η jet| < 1.3
140 < pjet

T < 160 [GeV/c]
SoftDrop β = 0, zcut = 0.1
∆R1,2 > 0.1

0

0.5

1

1.5

2

2.5

3

3.5
0-10%,

√
sNN = 5.02 TeV

Pb
Pb

/p
p

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

zg

M
C

/D
at

a

b

b b
b

b
b

b
b

Datab

JEWEL+PYTHIA cell size (0.05)
cell size down (0.025)
cell size up (0.1)
anti kT R = 0.4 Jets
|η jet| < 1.3
250 < pjet

T < 300 [GeV/c]
SoftDrop β = 0, zcut = 0.1
∆R1,2 > 0.1

0

0.5

1

1.5

2

2.5

3

3.5
0-10%,

√
sNN = 5.02 TeV

Pb
Pb

/p
p

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

zg
M

C
/D

at
a

Figure 2. Comparison of Jewel+Pythia predictions (colored lines) with CMS data (black
markers) for the ratio of the subjet groomed momentum fraction distributions in central PbPb
to pp events. The low and high pT ranges are shown on the left and right respectively. The
bottom panels present the ratio of the Monte Carlo predictions with data.
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