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Abstract. In previous work, we derived the most general solution of the collisionless
Boltzmann equation describing the accretion of a kinetic gas into a Schwarzschild black hole
background, and we gave explicit expressions for the corresponding observables (the current
density and stress energy-momentum tensor) in terms of certain integrals over the distribution
function. In this article, we numerically compute these integrals for the particular case of
the steady-state, spherical symmetric accretion flows which, at infinity, are described by an
equilibrium distribution function of given temperature. We analyze in detail the behavior of the
observables as a function of the temperature and the radial coordinate, comparing our results
with the perfect fluid model of Bondi-Michel accretion.

1. Introduction
During the last few years there has been an increasing interest in the relativistic kinetic theory
of gases, originating from the need to consider kinetic gases in extreme situations, either at
very high temperatures or in the presence of strong gravitational fields, where the standard
Newtonian theory breaks down. Such situations typically occur in astrophysical or cosmological
scenarios, for instance in the vicinity of black holes or in the early Universe. For a recent book
on relativistic kinetic theory, we refer the reader to [1]. Other relevant reviews include the book
by Stewart [2], the survey article by Ehlers [3], and the survey article by Andréasson [4] on
more recent mathematical applications of relativistic kinetic theory. Incorporating the principle
of general covariance of Einstein’s theory of general relativity, the general relativistic kinetic
theory of gases possesses an elegant geometric formulation based on the tangent (or cotangent)
bundle associated with the spacetime manifold (M, g), see for example Refs. [5, 3, 6, 7, 8, 9, 10].

In previous work [10], we provided a systematic study for the propagation of a collisionless,
relativistic kinetic simple gas on a nonrotating black hole background, neglecting its self-gravity.
To this end, we used tools from the theory of integrable Hamiltonian systems and derived the
most general solution of the collisionless Boltzmann equation on a Schwarzschild background
describing accretion. Further, we derived explicit expressions for the observables (namely, the
current density and the stress energy-momentum tensor) and specialized them to the particular
case of a spherical, steady-state flow. Assuming that asymptotically, the gas is isotropic and
in thermodynamic equilibrium at some temperature T > 0, we computed the accretion and
compression rates, the energy density and the radial and tangential pressures at the horizon in
the limit in which the thermal energy kBT � mc2 is much smaller than the rest energy mc2 of
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the gas particles.1 In this limit, we found that the tangential pressure at the horizon is about
ten times larger than the radial one. This provides a partial explanation for the known fact that
the accretion rate for a collisionless gas is low compared to the Bondi-Michel accretion model in
the hydrodynamic, isotropic perfect fluid case [11, 12, 13, 14]. Furthermore, in [10] we showed
an asymptotic stability result, proving that rather general initial gas configurations (which are
not necessarily stationary nor spherically symmetric) relax in time to a spherical steady-state
solution.

Our intention here is to analyze the behavior and properties of the observables corresponding
to the spherical steady-state models in more detail. Whereas in our previous work we only
analyzed the low temperature limit and the behavior of the observables at the horizon and in the
asymptotic region, here we extend the analysis to arbitrary temperatures and values of the radial
coordinate. This is achieved by computing numerically the integrals over the momenta derived
in [10] and plotting the results. By interpreting these plots we obtain a better understanding
for the physical properties of a collisionless kinetic gas which is accreted by a black hole and the
manner it differs from the behavior of a perfect fluid in the same situation. In the last part of
the article, we provide an explanation for the reason why the kinetic gas ceases to behave as an
isotropic perfect fluid in the vicinity of the black hole, even though in our model it fulfills the
same conditions as a perfect fluid at infinity.

2. The spherical steady-state model
Our (highly idealized) model of black hole accretion is based on the assumptions that the
accretion flow is steady-state, spherically symmetric, and that the self-gravity and collisions
of the kinetic gas being accreted can be neglected. In the cotangent-bundle formulation the gas
configuration can be described by a one-particle distribution function f(x, p) which satisfies the
collisionless Boltzmann equation2(

pµ
∂

∂xµ
− 1

2
pαpβ

∂gαβ

∂xµ
∂

∂pµ

)
f = 0 (1)

on a Schwarzschild black hole background (M, g). The spacetime observables, that is, the
current density and stress energy-momentum tensor, are obtained from the distribution function
by integration over the momentum space Cx consisting of those p which have the form
p = gµν(x)pνdxµ with pν∂ν denoting a future-directed timelike tangent vector at x:

Jµ(x) =

∫
Cx

pµf(x, p)dvolx(p), (2)

Tµν(x) =

∫
Cx

pµpνf(x, p)dvolx(p), (3)

with dvolx(p) :=
√
−det(gµν(x))d4p the natural volume element on Cx.

In [10] we derived the most general solution of Eq. (1) in terms of appropriate symplectic
coordinates on the cotangent bundle T ∗M associated with the Schwarzschild spacetime (M, g)
and provided a detailed discussion of the symmetries of f . This was achieved by exploiting the
fact that geodesic motion in a Schwarzschild spacetime constitutes an integrable Hamiltonian
system. By imposing spherical symmetry and stationarity, we showed that any steady-state,
spherical configuration is described by a distribution function of the form

f(x, p) = F(m,E,L), (4)

1 As usual, kB denotes Boltzmann’s constant and c the speed of light.
2 Here, (xµ, pµ) refer to adapted local coordinates on the cotangent bundle T ∗M , in which the canonical
momentum is expanded as p = pµdx

µ.
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with F a smooth function of the mass m, energy E, and total angular momentum L of the gas
particles, which, in terms of standard Schwarzschild coordinates (t, r, ϑ, ϕ) are given by

m =
√
−pµpµ, E = −pt, L =

√
p2ϑ +

p2ϕ
sin2 ϑ

. (5)

Since these quantities are conserved along geodesics, it is clear that Eq. (4) provides a solution
of the collisionless Boltzmann equation. The arguments presented in [10] show that any steady-
state, spherical solution must be of this form.

For the following, we consider the situation in which there is a reservoir of identical particles
at infinity. We assume that these particles have positive rest mass m > 0 and that their momenta
are isotropically distributed. Additionally, we assume that (although the gas is assumed to be
collisionless) some physical process in the past drove the reservoir to thermodynamic equilibrium
at some fixed temperature T > 0. As a consequence of (4), this implies that the distribution
function is given by

f(x, p) = αδ(
√
−pµpµ −m)e−zε, (6)

where α is a positive amplitude with untis 1/(volume×mass4 × velocity4), ε := E/(mc2) is the
ratio between the total energy of the particle and its rest energy, and z is the dimensionless
inverse temperature

z :=
mc2

kBT
. (7)

As stated in the introduction, in [10] we explicitly computed the associated observables at the
horizon and in the asymptotic region in the low temperature limit z → ∞, and showed that
the accretion rate agrees with known results based on Newtonian calculations [15, 13]. In the
following, we extend these results to arbitrary values of z and the dimensionless radial coordinate
ξ := 2r/rH , with rH the event horizon radius.

Even though this accretion model is highly idealized and based on a number of assumptions
that eventually need to be relaxed, it exhibits rich phenomenology as we show next.

3. Phenomenology of the spherical steady-state model
Explicit expressions for the particle and energy fluxes, the current density, and the stress energy-
momentum tensor for a distribution function of the form (6) in terms of integrals over the variable
ε are given in Section IV.C of Ref. [10]. In the following, we compute these integrals numerically
and analyze their dependency on z and ξ.

The particle accretion rate (number of particles that cross the horizon per unit time) and the
energy accretion rate (total energy crossing the horizon per unit time) are given by

Ṅ = αm4c5π2r2H

∞∫
1

λc(ε)
2e−zεdε, (8)

Ė = αm5c7π2r2H

∞∫
1

ελc(ε)
2e−zεdε, (9)

respectively. In these expressions,

λc(ε) =

√
12

1− 4a− 8a2 + 8a
√
a2 + a

∣∣∣∣∣
a= 9

8
ε2−1

, (10)
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is the critical value of the (dimensionless) total angular momentum, below which the particles
are absorbed by the black hole. For a derivation of Eq. (10) and details, see Appendix A in [10].
For the purpose of this article it is enough to know that λc(ε) is a monotonously increasing
function such that λc(1) = 4 and λc(ε) '

√
27ε for ε→∞.

For very low temperatures (z → ∞), Ė ' mc2Ṅ , since each particle’s energy E ' mc2 is
dominated by its rest mass energy. However, for finite values of z the energy accretion rate
Ė is larger than mc2Ṅ since it includes the internal energy of the gas. When analyzing the
behavior of these accretion rates as a function of temperature, it is convenient to eliminate the
unphysical parameter α. This can be done by replacing α with the particle density at infinity,
given by [16, 17, 18]

n∞(z) = 4πα(mc)4
K2(z)

z
, (11)

where K2 is the modified Bessel function of the second kind. In Fig. 1 we plot the dimensionless
quantities Ṅ/(r2Hcn∞) and Ė/(r2Hmc3n∞) as a function of the dimensionless inverse temperature
z.
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Figure 1. Particle and energy accretion rates as a function of the inverse temperature z. The
solid blue lines describe the asymptotic behavior in the low temperature limit z → ∞, see
Eqs. (12,13). The red dashed lines describe the behavior in the high temperature limit, see
Eqs. (14,15).

For low temperatures one finds [10]

Ṅ ∼ 4r2Hc
√

2πzn∞ ' (8.3× 1028)

(
MH

10M�

)2 ( n∞
1cm3

)(
z

109

)1/2 1

s
, (12)

Ė ∼ 4r2Hmc
3
√

2πzn∞ ' (2.2× 10−21)

(
MH

10M�

)2
(
m

mp

)(
n∞

1cm3

)(
z

109

)1/2 M�c
2

yr
, (13)

with M� and mp denoting the solar and proton mass, respectively, and where we have used
typical values for the ionized component of the interstellar medium in our Galaxy. This result
agrees with Newtonian-based calculations [15, 13], and it differs from the corresponding result in
the isotropic perfect fluid case by a factor of the order of z, see for instance [13]. In the opposite
limit of extremely high temperatures we find, using a similar method than the one described in
Appendix C of [10],

Ṅ ' 27π

4
r2Hcn∞, (14)
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Ė ' 81π

4

r2Hmc
2n∞
z

. (15)

We see that while the particle accretion rate converges to a constant for small z, the energy
accretion rate diverges like 1/z.

At this point, the question arises why the particle accretion rate Ṅ decreases steadily as
the temperature increases, while the energy accretion rate Ė starts decreasing until it reaches
a minimum, located about z ∼ 1, and then increases again. This difference can be understood
as follows. For small temperatures most of the particles in the reservoir have very low internal
energy, and thus most of the infalling particles are absorbed by the black hole, leading to a high
particle accretion rate (compared to r2Hcn∞). In contrast, at high temperatures, only a small
fraction of the infalling particles will be absorbed by the hole, since most of the gas particles
have large enough angular momenta λ > λc(ε). To make this point more precise, we consider
the critical impact parameter below which the particle is absorbed by the black hole, which is
found to be

bc(ε) =
Lc(E)√
E2 −m2

=
rH
2

λc(ε)√
ε2 − 1

. (16)

For small temperatures, most particles have energy ε ' 1 yielding large values of bc(ε), showing
that in this case most particles are absorbed by the black hole. In contrast, at high temperatures
most particles have energies ε � 1 in which case bc(ε) '

√
27rH/2, and only a small fraction

of the particles fall into the black hole. However, in this case, the internal energy of each
absorbed particle is high, and thus although a small fraction of the particles are absorbed at
high temperatures, each of the absorbed particles carries much more energy than in the low
temperature case, giving rise to a large energy accretion rate. The behavior of Ė displayed in
the right panel of Fig. 1 is the result of these two competing effects (the smaller fraction of
absorbed particles versus higher internal energy for each gas particles as the temperature goes
up).
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Figure 2. The behavior of the compression rate as a function the dimensionless radial coordinate
ξ for different temperatures.

To reinforce this interpretation, we compute the compression rate n/n∞ and the energy
density ρ of the kinetic gas as a function of ξ at different temperatures. In Fig. 2, we show the
behavior of the compression rate n/n∞. Here, the particle density is defined invariantly by

n(ξ) =
√
−Jµ(ξ)Jµ(ξ), (17)
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with Jµ the current density whose explicit representation can be found in Section IV.C in [10]. As
can be observed from the plots in Fig. 2, at fixed temperature the compression rate increases as
one moves closer to the black hole, as expected. However, at any fixed position, the compression
rate decreases as the temperature increases. This further illustrates the fact that at high
temperatures, a smaller fraction of the particles is absorbed by the black hole.
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Figure 3. The behavior of the energy density ρ as a function of ξ at different temperatures.
Left panel: Ratio between ρ(ξ) and the rest energy density n(ξ)mc2. Right panel: Ratio between
ρ(ξ) and the rest energy density n∞mc

2 at infinity.

Next, in Fig. 3 we show the behavior of the energy density ρ(ξ) of the gas, compared to
both its rest energy density at ξ and the rest energy density at infinity. Here, ρ(ξ) is defined
invariantly as minus the eigenvalue corresponding to the unique future-directed, unit timelike
eigenvector e0 of Tµν(ξ), such that Tµνe

ν
0 = −ρeµ0 . ρ is computed numerically from the explicit

expressions for Tµν(ξ) given in Section IV.C of Ref. [10]. We see from the plots in the left panel
that as expected, the quantity ρ(ξ)/(n(ξ)mc2) (being equal to one plus the fraction between the
internal energy of the gas and its rest energy) increases as one moves closer to the black hole
or as the temperature goes up. In contrast to this, the behavior of the ratio between ρ(ξ) and
the rest energy density at infinity, n∞mc

2, is not monotonous in the temperature anymore, as is
visible from the plots in the right panel of Fig. 3. As explained before, the reason for this is the
smaller fraction of particles being accreted as the temperature goes up, leading to the difference
between the behavior of n/n∞ and ρ/(nmc2) (the first ratio decreases while the second one
increases as temperature increases).

Next, we compute the radial and tangential pressures prad and ptan of the gas. As already
mentioned in the introduction, it was shown in [10] that at the horizon and in the low temperature
limit z →∞ the relativistic kinetic gas behaves very differently than an isotropic perfect fluid,
ptan being almost an order of magnitude larger than prad. In the following, we analyze the
behavior of the pressures as a function of ξ for finite temperatures. The radial and tangential
pressures are obtained from the eigenvalues of Tµν corresponding to the spacelike eigenvectors;
more specifically,

Tµνe
ν
r = prade

µ
r , Tµνe

ν
ϑ = ptane

µ
ϑ,

with er the unit outgoing radial eigenvector of Tµν and eϑ := r−1∂ϑ. In Fig. 4 we show
the behavior of these quantities divided by the rest mass energy nmc2. For large values of ξ,
the ratios prad/(nmc

2) and ptan/(nmc
2) are approximately equal to each other, and they only

depend on the temperature, consistent with an isotropic gas satisfying the ideal gas equation of
state. However, as one approaches the horizon, ptan/(nmc

2) increases steadily while prad/(mc
2)
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decreases close to the horizon, resulting in an anisotropic distribution of the pressure and a
departure from the isotropic perfect fluid case. The ratio between ptan and prad at the horizon
varies between a factor of about 5 for z = 1 and about 10 for large z, see Fig. 5 and Ref. [10]
for the case z →∞.
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Figure 4. The ratio between the radial (left panel) and tangential (right panel) pressures and
the rest energy density as a function of ξ for different values of the temperature.
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p=pradHz=5L
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Figure 5. A comparison between the radial and tangential pressure profiles for two different
values of z. The solid lines refer to the tangential pressure, the dashed lines to the radial one.
While the ratio ptan/prad converges to one as ξ →∞, it increases as one approaches the horizon,
reaching a value of about 5 for z = 1 and about 8 for z = 5.

As discussed in [10], apart from the difference between the radial and tangential pressures,
there is another property of the kinetic gas that distinguishes it from an isotropic perfect fluid
configuration. In the latter, the current density is proportional to the four-velocity of the fluid
which is also a timelike eigenvector of Tµν . However, in the former case, J = Jµ∂µ does not
coincide with the timelike eigenvector of Tµν in general. To quantify this difference, we introduce
the hyperbolic angle θ defined by

cosh θ = −g(e0,u), sinh θ = g(er,u),
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Figure 6. The quantity sinh θ as a function of ξ for different values of the temperature. While
sinh θ → 0 as ξ →∞ for all values of z, sinh θ is clearly different from zero close to the horizon,
implying that the kinetic gas does not behave as a perfect fluid in the vicinity of the horizon.

where u := J/n is the mean four-velocity of the particles. In the perfect fluid case, u coincides
with e0 and θ = 0; hence the angle θ measures the deviation from the perfect fluid case. In
Fig. 6 we plot sinh θ as a function of ξ for different temperatures. While asymptotically for
ξ →∞ this quantity converges to zero for all values of z, it increases steadily as one approaches
the horizon. In the limit z → ∞, the value of sinh θ at the horizon can be computed from the
results in Section V.A of Ref. [10], giving sinh θ ' 0.0345. As the temperature increases, this
value increases until it reaches sinh θ ' 0.07 when z = 1.

4. Comparison with the isotropic perfect fluid case
In this section, we wish to address the question of why our relativistic kinetic gas model behaves
so much differently than the hydrodynamic model of Bondi-Michel accretion, even though in
both cases the gas behaves exactly as an isotropic perfect fluid at infinity. Naively, one might
have expected that in some limit the kinetic model should have reproduced the hydrodynamic
flow, since the hydrodynamic equations can be obtained as an appropriate limit of a kinetic
gas which is in (local) thermodynamic equilibrium [19, 18, 2]. Although in our model we have
neglected collisions, one could still argue that our distribution function in Eq. (6) corresponds
to an equilibrium distribution function and hence, the corresponding observables should be
fluid-like. So why is the accretion flow in our model different than in the hydrodynamic case?

The answer comes from the observation that although, formally, the distribution function
described by Eq. (6) looks like an equilibrium distribution function, in fact it is not. The reason
for this can be traced back to the curved geometry of the Schwarzschild background and its
causal properties, and relies on the fact that in our model in [10] the support of the distribution
function is restricted to the region Γaccr of phase space corresponding to particle trajectories
originating from the reservoir. On the one hand, this means that only particles with large enough
energies E > mc2 are admitted in the gas. Although this eliminates the possibility of occupying
bounded trajectories, it should be noted that the contributions from such trajectories would
not affect the observables in the vicinity of the horizon, since they are confined to the region
r > 3rH/2 outside the photon sphere. On the other hand, the restriction to Γaccr also eliminates
the possibility of occupying those particle trajectories that emanate from the white hole (see
Fig. 7) and whose contributions would affect the observables close to the horizon. Therefore,
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since it is truncated to the subset Γaccr, the distribution function (6) is not an equilibrium
distribution function.

Figure 7. (adapted from Fig. 2 in [10]) Projection of the phase diagram onto to (ξ, v = ṙ/mc)-
plane illustrating the particle trajectories for different energy levels ε and total dimensionless
angular momentum λ = 6. The black curve in the region v < 0 corresponds to an incoming
particle from infinity which is absorbed by the black hole, while the black curve in the region
v > 0 describes an outgoing particle that is emitted from the white hole and escapes to infinity.
The red curve in the region ξ > 6 describes a particle that is incoming from infinity but has
large enough angular momentum λ > λc(ε) to be reflected at the potential barrier, and the red
curve in the region ξ < 3 describes a particle that is emitted by the white hole, is reflected at
the potential barrier and absorbed by the black hole. The blue curve describes the separatrix
and corresponds to the energy level ε such that λc(ε) = λ.

In the collisionless case, the restriction to Γaccr is appropriate, since if a particle trajectory is
occupied at one instant, it is occupied for all times, such that eliminating the particle trajectories
emanating from the white hole makes sense from a physical point of view. In fact, if one considers
the distribution function (6) on the full phase space instead of restricting it to Γaccr, one obtains
an isotropic perfect fluid configuration with four-velocity u parallel to the Killing vector field
k = ∂t. However, this configuration describes a static flow which fails to be regular at the
horizon, and thus it does not describe a Bondi-Michel-like flow or any other physically well-
defined solution.

Clearly, the situation changes when collisions are taken into account, since in this case a
binary collision may cause an unoccupied trajectory to become occupied after the collision takes
place. Hence, in this case, it does not make sense to restrict the phase space to Γaccr, and the
bounded trajectories and those emanating from the white hole have to be taken into account.
We intend to analyze the effects of collisions in future work.
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5. Conclusions
In this article, extending previous work [10], we have presented a detailed analysis of the
properties of the spherical, steady-state accretion of a relativistic, collisionless kinetic gas into
a Schwarzschild black hole. Assuming that in the asymptotic region the gas is isotropic and
described by an equilibrium distribution function, we have computed the relevant physical
quantities such as the accretion rate, particle density, energy density and radial and tangential
pressures, and we have analyzed their behavior as a function of the temperature of the gas at
infinity and/or the radial coordinate. In particular, we have shown that for given mass of the
black hole and given particle density number at infinity, the energy accretion rate diverges when
z → 0 or z → ∞, having a minimum when the ratio z = mc2/(kBT ) between the rest mass of
the particles and their thermal energy is of the order one. We attributed this behavior to the
competition between two different effects: the smaller fraction of particles being accreted by the
black hole versus their higher internal energy as the temperature increases.

Further, we have analyzed the difference between the properties of the collisionless flow to
those of an isotropic perfect fluid, as is assumed in the Bondi-Michel model. This difference
manifests itself in at least three different ways. First, in the low temperature limit, the accretion
rate in the collisionless case is much lower than in the fluid case, leading to mass accretion rates
of the order of 10−21M�/yr for accretion of the ionized component of the interstellar medium by
a stellar mass black hole of mass 10M� under typical conditions [13]. Second, in the collisionless
case, although equal at infinity, the radial and tangential pressures differ from each other at
finite radius (the difference being largest at the horizon) implying that the gas is anisotropic.
Third, in the collisionless case, the current density does not necessarily agree with the timelike
eigenvector of the stress energy-momentum tensor. This difference can be quantified by an
hyperbolic angle θ whose behavior we have analyzed. This behavior shows that in the vicinity
of the horizon, the collisionless kinetic gas is different from a perfect fluid.

Finally, we have provided an explanation for the fact that in our model the kinetic gas does
not behave as an isotropic perfect fluid, although it does so at infinity. As we show, the origin for
this effect is geometrical, the non-trivial causal structure of the Schwarzschild black hole leading
to a discrimination between the particle trajectories that end at the black hole and those that
emanate from the white hole. It should be interesting to investigate the effects introduced by
collisions, and to check whether such effects diminish the differences reported in this article
between the kinetic and isotropic perfect fluid models.

Acknowledgement
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Birkhäuser)
[2] Stewart J 1971 Non-Equilibrium Relativistic Kinetic Theory (Berlin: Springer-Verlag)
[3] Ehlers J 1971 General relativity and kinetic theory General Relativity and Cosmology ed Sachs R (New York:

Acedemic) pp 1–70
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