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Abstract. A closed form analytical solution of laminar mixed convection heat transfer of a 

nanofluid between two vertical parallel plates, accounting for the effects Brownian motion and 

thermophoresis, is presented for the fully developed region under thermal boundary conditions 

of the first and fourth kinds. Four kinds of nano-sized solid particles with varied thermophysical 

properties suspended in water are considered. Closed form analytical expressions of velocity and 

temperature fields, pressure gradients, nanoparticle concentration profiles, and Nusslet numbers 

are illustrated. Effects of the controlling parameters, namely the buoyancy parameter, thermal 

conductivity, solid/fluid ratio, and volume fraction, on the hydrodynamic and heat transfer 

parameters such as pressure gradient and Nusslet number are discussed in detail. It is found that 

the Nusslet number increases with increases in the buoyancy parameter and volume fraction. 

However, the pressure drop is found to increase with volume fraction and decrease with the 
buoyancy parameter. In addition, for upward mixed convection flow, the pressure drop attributed 

to the addition of nano-sized solid particles into the base fluid can be overcome by the buoyancy 

forces. The critical values of the buoyancy parameter– where the buoyancy forces balance the 

viscous forces–are obtained and presented. 

1.  Introduction 
Nanofluids are promising cooling mediums that are expected to replace conventional media in many 

engineering applications that require high-efficiency cooling systems. They can be produced by adding 

a small amount of tiny-sized solid particles to a conventional fluid such as water or oil. Because the 

thermal conductivities of the solid particles are high compared to the base fluid, the thermal conductivity 
of the mixture increases, leading to heat transfer enhancement. However, experimental work showed 

that this enhancement is much higher than the expected thermal conductivity increment [1]. Two slip 

mechanisms producing a relative velocity between the nanoparticle and the base fluid have been proven 
to be the most significant sources behind the anomalous heat transfer in nanofluids: Brownian motion 

and thermophoresis [2]. 

Several researchers studied the effects of Brownian diffusion and thermophoresis on nanofluid heat 
transfer flow inside channels by employing the two-component non-homogeneous model for convection 

transport in nanofluids, developed by Buongiorno [2]. Grosan and Pop [3] and di Schio et al. [4] 

investigated the problems of mixed and forced convection flows between two parallel plates, 

respectively. Yang et al. [5] provided a theoretical explanation for the anomalous heat transfer in 
nanofluids. Li and Nakayama [6] studied the effect of temperature dependency of nanofluid 
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thermophysical properties on forced convection heat transfer enhancement. In all cases, an obvious 

increment in the heat transfer of nanofluids was found. 

In this paper, the problem of laminar mixed convection heat transfer of a nanofluid between two 

vertical parallel plates, taking into account the Brownian motion and thermophoresis effects, is 
investigated in the fully developed region under the thermal boundary conditions of the first and fourth 

kinds. Based on a literature survey, the problem has not yet been solved, and such a study is important 

to understanding how nanoparticle migration impacts heat transfer inside channels. The presented closed 
form solutions can also be used to validate future work conducted in the developing region. 

2.  Governing equations and solution 

A fully developed mixed convection nanofluid flow between two vertical plates under the first and 

fourth kinds of boundary conditions is considered. At low volume fraction, the nanoparticles and the 
base fluid form a dilute mixture and are in thermal equilibrium. The thermophysical properties of the 

nanoparticles and the base fluid (water) used in this study can be found elsewhere in the literature. The 

viscosity, thermal conductivity, and density of the nanofluid are hereby evaluated using the following 
relationships. 
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For laminar, steady flow in the fully developed region, the conversion equations that govern the 

present problem can be written in dimensionless forms. 

Momentum equation: 
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Energy equation: 
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Continuity equation for the nanoparticles: 
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Mass flux concentration of the nanoparticles: 
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Integral form of the nanofluid continuity equation: 
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All these equations are subject to boundary conditions, which are U(0)=0, U(1)=0, 1)0(  , and 

0)1(  for the first kind of boundary condition and 
nf
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 and 0)1(   for the fourth kind 

of boundary condition. The walls are impermeable; hence additional boundary conditions can be written 

as 0|
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 . These governing equations, subject to 

their boundary conditions, are solved analytically, and closed form expressions are obtained. 

For the first kind of boundary condition: 

 θ = -Y+1 (6) 
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For the fourth kind of boundary condition: 

 θ = -kbf/knf (-Y+1) (9) 
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The dimensionless velocity for both kinds is: 

 U=Y*(c1*(-0.25+0.25*Y)+c2*dP/dZ*(-0.5+0.5*Y)+c3*(1/3+Y*(-1/2+1/6*Y))) (12) 
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An inspection of Equations 7 and 10 reveals that the pressure drop inside the channel increases with the 

presence of nanoparticles, and the higher the volume fraction, the greater the effect. It also reveals that 
the buoyancy reduces the negativity of the pressure gradient buoyancy-aided flow. Thus, there is a value 

of Gr/Re that would reduce the pressure gradient to its value for pure fluid (i.e., when no solid particles 

are added to the fluid). The value can be obtained by equating the pressure given by Equations 7 and 10 

to -12 and is given as: 
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Where w=1 for the first kind of boundary condition, and w=knf/kbf for the fourth kind of boundary 

condition. 

3.  Results and Discussion 
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Figure 1 shows the variation in pressure gradient with the volume fraction for three values of the 

buoyancy parameter. It is clear from the figure that the pressure drop inside the channel increases when 

nanoparticles are added to the fluid. The higher the volume fraction, the greater the effect. In contrast, 

the buoyancy force helps to reduce the pressure drop in the channel, also shown in the figure. Figure 2 
shows the pressure gradient variation with volume fraction for three values of the solid/fluid thermal 

conductivity ratio for the fourth kind of boundary condition. Clearly, the pressure drop decreases as the 

thermal conductivity ratio decreases. Figures 3 and 4 show the variation of Nu with volume fraction for 
various values of Gr/Re and kp/kf, respectively. As expected, Nu increases with volume fraction and the 

buoyancy parameter. However, it decreases with the solid/fluid conductivity ratio, and this is attributed 

to the migration enhancement that results from the increment in thermophoresis. 

 
 

 

 

 

 

 

Figure 1. Pressure gradient as a function of volume fraction for the first kind of boundary condition. 
 

 

 

 

 

 

 

Figure 2. Pressuregradient as a function of volume fraction for the fourth kind of boundary condition 
(Gr/Re=10). 

 

 

 

 

 

 

Figure 3. Nu as a function of volume fraction for the first kind of boundary condition (Kr=650). 
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Figure 4. Nu as a function of volume fraction for the first kind of boundary condition (Gr/Re=2). 
 

Figures 5 and 6 represent the pressure gradient and the Nusslet number, respectively, as 
functions of volume fraction for four kinds of nanoparticles. They show that SiO2 gives the minimum 

pressure drop inside the channel, while Al2O3 gives the maximum heat transfer rate. 

 

 

 

 

 

 

 

Figure 5. Pressure gradient as a function of volume fraction for the fourth kind of boundary condition 
(Gr/Re=5). 

 
 

 

 

 

 

 

 

Figure 6. Nu as a function of volume fraction for the fourth kind of boundary condition (Gr/Re=1). 
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Conclusion 

Analytical solutions for mixed convection heat transfer of a nanofluid between two parallel plates in the 

fully developed region has been presented for first and fourth kinds of boundary conditions. For the first 

kind, the pressure gradient was found to be independent of nanoparticle thermal conductivity. Results 
also show that SiO2 gives the minimum pressure drop inside the channel while Al2O3 gives the maximum 

heat transfer rate. 
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Nomenclature 

b channel spacing 

pd  nanoparticle diameter 

DB Brownian diffusivity, = pbfBO d3/TK   

DT thermophoresis diffusivity, = 0bfbfpbfbf */*)kk2/(k26.0   

Gr  Grashof number, 
bf

2

4

1bf

K

bqg
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K thermal conductivity 
KBO Boltzmann constant  

Kr solid/fluid thermal conductivity ratio, bfp K/K  

BTN  ratio of Brownian and thermophoretic diffusivities, =
T

T
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D

D 00
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for first kind, or 

bq

kT
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D

D

1

bf00
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for fourth kind 

Nu Nusselt number 

p fluid pressure at any cross section 

p' pressure defect at any cross section, p-ps 

0p  fluid pressure at channel entrance 

ps hydrostatic pressure, -ρ0 gz 

P dimensionless pressure at any cross section, 
2
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u
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Re Reynolds number, 

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T temperature at any point 

0T  inlet temperature 

u  entrance axial velocity 

u longitudinal velocity component at any point 
U dimensionless longitudinal velocity, = u/uo 

y horizontal coordinate 

Y dimensionless horizontal coordinate, y/b 

z vertical coordinate 
Z dimensionless vertical coordinate, z/(b Re) 

 

Greek Symbols 

  kinematic fluid viscosity 

ρ fluid density 

μ dynamic fluid viscosity 

  dimensionless temperature at any point,=
01
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1

mbf for          

fourth kind 

  thermal expansion coefficient 

  particle volume fraction 

Φ         rescaled nanoparticle volume fraction, 
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  immersed-particle buoyancy parameter, = )1(
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Subscripts 

 

bf base fluid 
nf nanofluid 

w wall 

p particle 
1 duct wall at Y = 0 

2 duct wall at Y = 1 

0          condition at the entrance 

 


