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Novel nonlinear excitations in ferromagnet excited

by all-magnonic spin-transfer torque
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Abstract. We report the novel nonlinear excitations, such as Akhmediev breathers solution
and Kuznetsov-Ma soliton caused by a spin wave passing through a magnetic soliton. The
former case demonstrates a spatial periodic process of a magnetic soliton. The other case shows
a localized process of the spin-wave background. In the limit case, we get the novel rogue waves
with high magnon density distribution and clarify its formation mechanism.
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1. Introduction
Nonlinear excitations [1, 2] are general phenomena in magnetic ordered materials. During
the past several decades there has been significant progress in describing the dynamics of
magnetic excitations in magnetic nanostructures, such as spin waves, domain wall, soliton
and magnetic vortex. The deviation of magnetization from the ground state results in the
excitation of spin waves in ferromagnet. Their attractive interaction and instabilities contribute
to the existence of topological and dynamic solitons. A magnetic domain wall forms a spatially
localized configuration of magnetization in ferromagnet, and it can be seen as a potential hill
which separates two generated magnetic states. Therefore, The dynamics of domain wall is
of great significance in ferromagnetic nanowires for its potentially technological applications
[3, 4, 5, 6, 7, 8]. On the other hand, the dynamic soliton describes the localized states of
magnetization which can be reduced to a uniform magnetization by continuous deformation. So,
this excited ferromagnet makes a transition to the ground state and it is sometimes said to be
topologically equivalent to the ground state. In general, the external field [9] and a spin-polarized
current [10] are the main driven forces for the dynamics of magnetization in ferromagnet. The
Walker solution analysis [11, 12, 13] has been extensively adopted to investigate the moving
domain wall in response to a magnetic field [14] or spin-polarized current [15, 16, 17]. Nowadays,
spin polarized currents are commonly used to create, manipulate, and control nanoscale magnetic
excitations such as domain walls [18, 19, 20] and vortices [21, 22, 23].

However, the nonlinear excitations have not been well explored. When a spin wave passes
through a magnetic soliton, a spin angular momentum can be transferred from the propagating
magnons to the soliton which is called by all-magnonic spin-transfer torque [24]. This all-
magnonic spin-transfer torque can affect the dynamics of magnetization and novel magnetic
states can occur. In this paper, we report the breather solutions and the novel magnetic states.
The dynamics of magnetization can be described by the dimensionless Landau-Lifshitz equation
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[15, 16] with the spin-transfer torque

∂m

∂t
= −m× heff +AJ

∂m

∂x
, (1)

where m is the normalized magnetization, and the effective magnetic field heff takes the form
heff = ∂2m/∂x2 + [(hK − 4π)mz + hext]ez. The last term denotes the adiabatic spin-transfer
torque, AJ = bJ t0/l0 with the characteristic time t0 and length l0, where bJ = PjeµB/ (eMs),
P is the spin polarization of the current, je is the electric current density and flows along the x
direction, µB is the Bohr magneton, e is the magnitude of electron charge.

2. Exact breather solutions and rogue waves
In order to obtain the exact breather solutions and rogue waves we only consider the isotropic
case, i.e., ∂m/∂t = −m × ∂2m/∂x2. In this case, the spin wave takes the form m0 ≡
(m01,m02,m03) = (cos δ, sin δ, 0) with δ = ksx. With the developed Darboux transformation
we obtain the exact solutions [25]

m · σ = K (m0 · σ)K−1, (2)

where σ is pauli matrix and the matrix K is given by

K =
1

|ξ|2 (P +Q)

(
ξ∗P + ξQ −µR∗e−iδ

µReiδ ξP + ξ∗Q

)
,

with ξ = iµ/2, N =
√
k2s − µ2, P = h11h

∗
11, Q = h12h

∗
12, R = −ie−iδh∗11h12, h11 = i(C1e

B −
C2e

−B)e−iδ/2, h12 = (C1e
−B −C2e

B)eiδ/2, C1 =
√
i (A2

sks −N) /2, C2 =
√
i (A2

sks +N) /2, and
B = −iN (x+ iµt) /2.

Akhmediev breathers. When |µ| < ks we obtain the Akhmediev breathers in Eq. (2)
with the parameters

P = ks cosh θ−N sinh θ−µ cosϕ,Q = ks cosh θ+N sinh θ−µ cosϕ,R = µ cosh θ−ks cosϕ−iN sinϕ,
(3)

where θ = µNt and ϕ = −Nx. The above result reveals that the solutions in Eq. (2) and (3) is
spatial periodic denoted by 2π/N , and aperiodic in the temporal variable, as shown in Fig. 1 (a)-
(c). This process can also be seen as the spatial manifestation of Fermi-Pasta-Ulam recurrence
realized by the magnetization dynamics. The spatial periodic distribution of magnetization
shows that the component m3 has two peaks and two valley in each unit distribution. The
magnetic Akhmediev breathers in Eqs. (2) and (3) in fact denotes the instability process of spin
wave background. A periodic magnon exchange occurs between the magnetic soliton and the
spin wave background. It should be noted that the magnetic soliton will lose this character on
the ground state background. It is worth mentioning that the interaction between spin wave
and magnetic soliton causes this very interesting phenomenon.

Kuznetsov-Ma soliton. Under the condition |µ| > Asks we obtain the magnetic
Kuznetsov-Ma soliton solution of Eq. (2) with the following parameters

P = µ cosh θ−ks cosϕ−ζ sinϕ,Q = µ cosh θ−ks cosϕ+ζ sinϕ,R = ks cosh θ+iζ sinh θ−µ cosϕ,
(4)

where ζ =
√
µ2 − k2s , θ = ζx, and ϕ = µζt. The main characteristic properties of Kuznetsov-

Ma soliton is spatially aperiodic and temporally periodic. Similar to the above discussion the
component m3 shows two peaks and two valley in each periodic distribution.
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Figure 1. Evolution of Akhmediev breathers and Kuznetsov-Ma soliton for magnetization
m = (m1,m2,m3) in Eqs. (2), (3) and (4). Parameters are given as follows: ks = 1, µ = 0.8 for
(a)-(c) and µ = 1.3 for (d)-(f), respectively.

Figure 2. Evolution of rogue wave for magnetization m = (m1,m2,m3) in the limit processes
µ → ks with ks = 1.

The illustration of magnetic Kuznetsov-Ma soliton is depicted in Fig. 1 (e)-(f), which shows
that the soliton is trapped in space by spin wave background. The spin wave can affect the
propagation velocity of magnetic soliton, which denotes the transfer of spin angular momentum
from spin wave background to a dynamic soliton called magnonic spin-transfer torque [24]. The
the magnon density distribution attains the maximum value 1 at x → ±∞. Different from the
Akhmediev breathers, the magnetic Kuznetsov-Ma soliton in Eqs. (2) and (4) expresses the
localized periodic magnon exchange, which takes the temporal periodic evolution. Also, the
high magnon density shows the temporal periodicity along the propagation direction of soliton.

Rogue waves. The above discussion shows that the condition |µ| = ks forms a critical
point which divides the modulation instability process (|µ| < ks) and the periodization process
(|µ| > ks). It leads to the different physical behavior how the breather character depends
strongly on the modulation parameter. There is two different asymptotic behavior in the limit
processes |µ| → (ks)

− and (ks)
+, respectively. The former case demonstrates a spatial periodic

process of a magnetic soliton forming the petal with four pieces. The other case shows a localized
process of the spin-wave background. In the limit case of |µ| → ks, we get the novel magnetic
rogue wave

m+ = −eiksx
(
1−

(
8x2k2s − i4xks (F1 − 2)

)
/F 2

1

)
,m3 = ±8txk3s/F

2
1 , (5)

where F1 = 1+t2k4s+x2k2s . The componentm3 is characterized by the antisymmetric distribution
of two peaks and two valleys, as shown in Fig. 2. The above results show that there exist
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Figure 3. The nonuniform exchange of magnons between rogue wave and background for
the different spin current. The inset figure denotes the maximal accumulation (or dissipation)
process for the critical current value AJ = 2kc. Other parameters are Ac = 0.2 and kc = 0.2.

two processes of the formation of the magnetic rogue wave: one is the localized process of
the spin wave background, and the other is the reduction process of the periodization of the
magnetic bright soliton. The magnetic rogue wave is exhibited by the strong temporal and
spatial localization of the magnon exchange and high magnon density.

3. Rogue waves with high magnon density distribution
For the perpendicular anisotropic ferromagnetic nanowire, it is reasonable to introduce q
replacing the components of normalized magnetization [1], i.e., q ≡ mx+ imy and m2

z = 1−|q|2.
Under the long-wavelength approximation [1], Eq. (1) becomes the integrable nonlinear
Schrödinger equation

i
∂q

∂t
=

∂2q

∂x2
+

1

2
q |q|2 + iAJ

∂q

∂x
− ω0q, (6)

where ω0 = 1 + hext/ (hk − 4π). In this case, the spin wave takes the form q = Ace
−i(kcx−ωct)

with ωc and kc being the dimensionless frequency and wave number, respectively. By employing
Darboux transformation [26] we get the novel magnetic rogue wave

q = Ace
iφ

[
4
(
1− itA2

c

)
t2A2

cη + 2txA2
cκ+ ε

− 1

]
, (7)

where η = A2
J +A2

c +4k2c − 4AJkc, κ = AJ − 2kc, φ = kcx−ωct, and ε = 1+x2A2
c . It is obvious

that Eq. (7) shows the typical rogue wave feature that the magnons accumulated from spin
wave background converge a single hump with the critical amplitude AQ = 3Ac with the high

magnon density peak |q|2 = 9A2
c . It implies that the localization wave is captured completely

at x = 0 and t = 0 by spin wave background.
In order to clarify the formation mechanism of rogue wave we consider the magnon density

distribution ρ ≡ |Q1 (x, t)|2− |Q1 (x = ±∞, t)|2 in a magnetic rogue wave, which takes the form

ρ = 8A2
c

Γ1 − Γ2

(Γ1 + Γ2)
2 , (8)

where Γ1 = 1 + t2A4
c and Γ2 = A2

c (x+ t (AJ − 2kc))
2. From Eq. (8) we find the integral∫+∞

−∞ ρ(x, t)dx = 0 and it shows that the loss of magnons in background completely transfer
to hump. The generation of rogue wave is mainly arose from the gathering energy and
magnons from the background toward to its central part, and the loss of magnons in background
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completely transfer to the hump part. On the other hand, it is interesting to show how rogue
wave gather magnons and energy toward to its central part from the background. This can be
explained by the quantity δ (x, t) ≡ limlQ→±∞ |Q1 (x, t) − Q1 (x = lQ, t)|2. With Eq. (7) we
obtain

δ (x, t) = 16A2
c

Γ1

(Γ1 + Γ2)
2 , (9)

which denotes the nonuniform exchange of magnons between rogue wave and background for
the different spin current as shown in Fig. 3. From Eq. (9) we find the spin current can control
the accumulation and dissipation rate of magnons, and there is a critical current condition, i.e.,
AJc = 2kc. Below the critical current, the magnons exchange decreases with the increasing
current term AJ . However, the magnons exchange is accelerated with the increasing current
above the critical value. The roles of spin-transfer torque are completely opposite for the cases
below and above the critical current which is shown in Fig. (3). When AJ = 2kc, the time of
magnons accumulation (or dissipation) attains its maximum. As shown the inset figure of Fig.
(3), i.e., the integral ξ (x, t) =

∫+∞
−∞ δ (x, t) dx = 8πAc/(1+ t2A4

c)
1/2, the magnons in background

accumulate to the central part when t < 0. It leads to the generation of a hump with two
grooves on the background along the space direction and the critical peak of the hump can
occur at t = 0. In contrast, when t > 0, the magnons in the hump start to dissipate into the
background so that the hump gradually decay. The magnetic rogue wave disappears ultimately,
and it verifies the rogue wave is only one oscillation in temporal localization and displays a
unstable dynamic behavior.

4. Conclusions
In summary, we investigate the novel dynamics of magnetization in a ferromagnet excited by the
All-Magnonic spin-transfer torque with the developed Darboux transformation. As an example,
we obtain the exact expressions of Akhmediev breathers solution, Kuznetsov-Ma soliton and
rogue waves. These results can be useful for the exploration of novel nonlinear excitation in
Bosonic and fermionic ferromagnet.
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