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Abstract. Recently, we observe an increasing interest in the laser-assisted processes that
take place at the solids surfaces or at the interfaces of semiconductor heterostructures. These
processes are affected by the plasmon effects induced by the interaction of quasi-free electrons in
solids with laser fields. The plasmon effects lead to a significant enhancement of the oscillating
in time electric field in a vicinity of the surface. The latter strongly modifies processes such
as the high-order harmonic generation from atoms passing close to the surface, the electron
photoemission from metal tips or the tunneling processes in semiconductor heterostructures. In
our paper, we focus on the photoemission phenomenon accounting for the space-dependence of
an oscillating in time, effective electric field created at the surface.

1. Introduction

The aim of this paper is to investigate the photoemission from a semiconductor heterostructure
occurring in an arbitrary space-dependent scalar potential and a time- and space-dependent
vector potential. The vector potential is periodic in time and describes a laser field. Its space-
dependence results from the interaction of the laser field with electrons in solids. Such conditions
are met, for example, in semiconductor nano-structures [1, 2, 3, 4, 5] (like quantum wires or
wells), photoemission from a metal tip [6, 7], carbon nano-tubes or graphene [8, 9, 10] or in
surface physics [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. To make our presentation as clear as
possible we shall restrict ourselves to the one-space-dimensional case, although extension of the
presented method to systems of higher dimensionality is possible (see, e.g. [21, 22]).

This paper is organized as follows. In Sec. II the most general solution of the Schrödinger
equation is introduced. The transfer-matrix method and matching conditions are analyzed in
Sec. III, whereas the reflection and transition probabilities are introduced in Sec. IV. These
probabilities must sum up to 1, which puts a very strong check for the accuracy of our numerical
calculations. The most important part of this paper, i.e., the concept of the scattering-matrix
method, is discussed in Sec. V. It is shown there why the scattering-matrix algorithm has to be
introduced, instead of a much simpler transfer-matrix algorithm. Numerical illustrations of the
applicability of this algorithm are presented in Sec. VI and are followed by short conclusions.

Unless it is stated otherwise, atomic units are used in our numerical illustrations.

2. Solution of the Schrödinger equation

Let us start with the one-dimensional Schrödinger equation of the form [23],

i∂tψ(x, t) =
[1

2

(1

i
∂x − eA(x, t)

) 1

m(x)

(1

i
∂x − eA(x, t)

)

+ V (x)
]

ψ(x, t). (1)
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We assume that the space-dependent mass m(x), scalar potential V (x), and vector potential
A(x, t) are spatially constant in finite intervals. Their values in an interval (xi−1, xi) are denoted
as mi, Vi, and Ai(t). We require also that the function A(x, t) is periodic in time,

A(x, t+ T ) = A(x, t), (2)

where T = 2π/ω and ω is the frequency of the oscillating in time electric field. Defining the
probability density ρ(x, t),

ρ(x, t) = |ψ(x, t)|2, (3)

and the probability current j(x, t),

j(x, t) =
1

2
ψ∗(x, t)

1

m(x)

(1

i
∂x−eA(x, t)

)

ψ(x, t)+
1

2
ψ(x, t)

1

m(x)

[(1

i
∂x−eA(x, t)

)

ψ(x, t)
]∗

, (4)

we show, using Eq. (1), that the probability is conserved. Indeed, assuming the above definitions,
we obtain the continuity equation,

∂tρ(x, t) + ∂xj(x, t) = 0. (5)

The space dependence of mass in Eq. (1) forces one to impose non-standard continuity conditions
on any solution of this equation. It is now the wave-function ψ(x, t) and the quantity

1

m(x)

(1

i
∂x − eA(x, t)

)

ψ(x, t) (6)

that have to be continuous at points of discontinuity of mass m(x) and both potentials, V (x)
and A(x, t) [23, 24, 25, 26]. We denote a general solution ψ(x, t) of Eq. (1) in a given interval
(xi−1, xi) as ψi(x, t). Note that, due to time periodicity of the Hamiltonian, ψi(x, t) can be
chosen such that the Floquet condition,

ψi(x, t+ T ) = e−iETψi(x, t), (7)

is satisfied, where E is the so-called quasi-energy. In this case, ψi(x, t) takes the form [28, 29,
30, 31],

ψi(x, t) =
∞
∑

M=−∞

exp
(

−i(E +Mω)t
)

∑

σ=±

∞
∑

N=−∞

Cσ
iNBM−N (σpiN ) exp (iσpiNx), (8)

where Cσ
iN are arbitrary complex numbers to be determined and

piN =
√

2mi(E +Nω − Vi − Ui), (9)

with Ui = e2〈A2
i (t)〉/2mi being the ponderomotive energy. Here, 〈A2

i (t)〉 means the time-average
of A2

i (t) over the laser-field oscillations.
The components for which piN are purely imaginary are called the closed channels. These

channels are not observed for a particle in initial or final states, but they have to be taken
into account in order to satisfy the unitary condition of the time evolution. In a general case,
BM−N (σpiN ) is a component of the Fourier expansion,

exp
(

iΦσ
iN (t)

)

=
∞
∑

M=−∞

exp (−iMωt)BM−N (σpiN ), (10)

provided that the vector potential A(x, t) is periodic in time. Functions Φσ
iN (t) are defined as

follows:

Φσ
iN (t) =

∫ t

0

[σe

mi
Ai(t)piN − e2

2mi

(

A2
i (t)− 〈A2

i (t)〉
)

]

dt. (11)

One can understand from these equations that the BM−N (σpiN ) functions depend on the form
of the vector potential A(x, t) describing the laser field.
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3. Matching conditions and transfer matrix

Continuity conditions discussed above and applied to a general solution (8) of the Schrödinger
equation (1) lead to an infinite chain of equations connecting constants Cσ

iN in the neighboring
domains. These matching conditions can be written in the matrix form,

B(i− 1, xi−1)Ci−1 = B(i, xi−1)Ci, (12)

where C±

iN = [C±

i ]N are the components of the columns C±

i . The matrices B(i, x) and Ci are
defined as follows,

B(i, x) =

(

B+(i, x) B−(i, x)

B′+(i, x) B′−(i, x)

)

, Ci =

(

C+
i

C−

i

)

. (13)

The elements of B(i, x) can be computed in the following way.
For an arbitrary function A(x, t) which satisfies Eq. (2), we have that

A(x, t) =
∞
∑

n=−∞

bn(x) exp (−inωt). (14)

The coefficients bn(x) assume constant values in the interval (xi−1, xi), which we shall denote as
bi,n. Using the continuity condition for the wave-function ψi(x, t) at the point xi−1, we compute
the elements of the matrices B+ and B−,

B±(i, x)M,N = BM−N (±pi,N )e±ipi,Nx. (15)

On the other hand, elements of the B′ matrix can be evaluated by substituting a general solution
(8) to the expression (6) and applying the continuity condition at xi−1. After some algebraic
manipulations we finally obtain the expression for the B′-matrices,

B′±(i, x)M,N = ± 1

mi
BM−N (±pi,N )pi,Ne±ipi,Nx − 1

mi

∞
∑

n=−∞

ebi,nBM−N−n(±pi,N )e±ipi,Nx, (16)

and a set of equations for vectors Ci,

Ci = BiCi−1, (17)

where
Bi = [B(i, xi−1)]

−1B(i− 1, xi−1). (18)

These relations allow to connect a solution in a given domain xi−1 < x < xi with an analogous
solution in any other domain xj−1 < x < xj ,

Cj = BjBj−1, . . . , Bi+1Ci = TjiCi, (19)

where Tji is the so-called transfer matrix [27, 28, 25].

4. Reflection and transition probabilities

It is clear now that, on the basis of Eq. (19), we can connect solutions in the boundary domains
(−∞, x0) and (xL−1,∞). Values of massm(x), scalar potential V (x) and vector potential A(x, t)
in these domains will be denoted as m0, V0, A0(t) and mL, VL, AL(t), respectively. We can then
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write down solutions of (1) for each of these domains. These solutions represent incident (ψinc),
reflected (ψref), and transmitted (ψtr) waves,

ψinc(x, t) =
∞
∑

M=−∞

e−iEte−iMωtBM (p0)e
ip0x, (20)

ψref(x, t) =
∞
∑

N,M=−∞

C−

0,Ne−iEte−iMωtBM−N (−pN )e−ipNx, (21)

ψtr(x, t) =
∞
∑

N,M=−∞

C+
L,Ne−iEte−iMωtBM−N (qN )eiqNx, (22)

where
pN =

√

2m0(E +Nω − V0 − U0), qN =
√

2mL(E +Nω − VL − UL). (23)

Constants C−

0,N and C+
L,N will be denoted from now on as RN and TN , respectively. Using

continuity conditions for the functions defined above, we get the probability conservation
equation for reflection and transition amplitudes, RN and TN ,

∑

N>Nref

pN
p0

|RN |2 +
∑

N>Ntr

m0qN
mLp0

|TN |2 = 1, (24)

where summations are over such N for which pN and qN are real, i.e., over the open channels.
This equation permits us to interpret

PR(N) =
pN
p0

|RN |2 (25)

and
PT(N) =

m0qN
mLp0

|TN |2 (26)

as reflection and transition probabilities for a tunneling process in which absorption (N > 0) or
emission (N < 0) of energy Nω by electrons occurred [28, 26]. In the case of a monochromatic
laser field, this process can be interpreted as absorption or emission of N photons from the laser
field.

The unitary condition (24) can be also interpreted as the conservation of the electric charge.
If we define the quantities proportional to the density of electric currents,

Jinc =
p0
m0

, Jref =
∑

N>Nref

pN
m0

|RN |2, Jtr =
∑

N>Ntr

qN
mL

|TN |2, (27)

then Eq. (24) has the form of the first Kirchhoff law,

Jinc = Jref + Jtr. (28)

Using Eq. (19) we can calculate constants C−

0,N = RN and C+
L,N = TN appearing in equations

(20) - (22). Indeed, since
CL = T C0, (29)

where the transfer matrix T = TL0, and because T , C0, and CL have the following block forms,

T =

(

T ++ T +−

T −+ T −−

)

, C0 =

(

C+
0

R

)

, CL =

(

T
0

)

, (30)
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we arrive at
T = T ++C+

0 + T +−
R, 0 = T −+C+

0 + T −−
R. (31)

Here, R and T denote the columns of RN and TN , and [C+
0 ]N = δ0,N . Thus, after some algebraic

manipulations, we obtain

R = −(T −−)−1T −+C+
0 , T =

(

T ++ − T +−(T −−)−1T −+
)

C+
0 , (32)

which allows us to determine the quantities RN and TN for a given transfer matrix T . For
open channels, these quantities are the amplitudes of reflection (RN ) and transition (TN )
probabilities, from which one can compute reflection and transition probabilities using equations
(25) and (26).

5. The scattering matrix

It follows from equations (15) and (16) that each of the Bi matrices that constitute the transfer
matrix Tji contain elements exp(±ipi,Nxi). The latter depend on the xi coordinates at which the
discontinuities appear. For closed channels, that is when the pi,N momenta are purely imaginary,
these numbers are real and may assume arbitrary values, depending on the xi coordinates. The
number of Bi matrices is equal to the number of discontinuity points, i.e., it depends on how we
divide the space into short intervals in order to make our potential tractable by our algorithm.
It may, therefore, turn out that in order to compute the transfer matrix Tji, we have to multiply
a large number of the Bi matrices, each containing both very small and very large numbers. It
is clear that such a procedure is numerically unstable. We have to find a way to modify our
method of calculations in order to compute the elements of each Bi matrix at the same point
x = 0 independently of where the ‘real’ xi is. This would eliminate ”dangerous” exp(±ipi,Nxi)
elements (turning them to 1), however at the cost of appearing somewhere else. We shall see
later that these ‘left-overs’ appear only as differences xi+1 − xi and, therefore, do not cause any
harmful side-effects.

It follows from Eq. (19) that in the neighboring domains, (xi−2, xi−1) and (xi−1, xi), we have,

Ci = Ti,i−1Ci−1. (33)

Although the elements of the transfer matrix Ti,i−1 have been computed from the continuity
conditions at point xi−1, one can compute them at any other point, for example at x = 0. To
this end, let us note what follows from the solution (8). Translation of the system by a certain
distance δ along the x-axis causes only multiplication of each member of the sum over N in (8)
by a constant exp (iσpiNδ). These constants can be included into the coefficients Cσ

iN . In this

way, we obtain a new set of constants which we shall denote as C̃σ
iN ,

C̃σ
iN = exp (iσpiNδ)C

σ
iN . (34)

We shall interpret these constants as coefficients in the solution (8), given by the continuity
conditions at a point xi−1 − δ. Eq. (34), written in the matrix form, becomes

C̃i = Pi(δ)Ci, (35)

where

Pi(δ) =

(

P+
i (δ) 0
0 P−

i (δ)

)

(36)

and

Ci =

(

C+
i

C−

i

)

, C̃i =

(

C̃+
i

C̃−

i

)

. (37)
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In the equation above, P σ
i (δ) is a diagonal matrix,

[P σ
i (δ)]NN ′ = δNN ′ exp (iσpiNδ), (38)

whereas C±

i and C̃±

i are the columns consisting of the constants C±

iN and C̃±

iN , respectively,

that is [C±

i ]N = C±

iN and [C̃±

i ]N = C±

iN . It follows from the form of the matrix Pi(δ) that the
following relations are satisfied,

P−1
i (δ) = Pi(−δ), Pi(δ1)Pi(δ2) = Pi(δ1 + δ2). (39)

Let us also note that the translation of the system defined above modifies the transfer matrix
Ti,i−1. We have

P−1
i C̃i = Ci = Ti,i−1Ci−1 = Ti,i−1P−1

i−1
(δ)Pi−1(δ)Ci−1. (40)

Thus,
C̃i = Pi(δ)Ti,i−1P−1

i−1
(δ)C̃i−1 (41)

and we can write it down as
C̃i = T̃i,i−1C̃i−1, (42)

where
T̃i,i−1 = Pi(δ)Ti,i−1P−1

i−1
(δ). (43)

Matrix elements denoted with the tilde symbol refer to the translated system. Using the method
defined above and the relation (19), we can connect now the solution in the domain (−∞, x0)
with the solution in any other domain (xi−1, xi). In this way the elements of the transfer matrix,
which until now have been computed at the points of discontinuity x0 . . . xi−1, are computed
each time at the same point x = 0. Let us illustrate this method for a special case of i = 3

C3 = T3,2T2,1T1,0C0 = P−1
3 (x2)T 0

3,2P2(x2)P−1
2 (x1)T 0

2,1P1(x1)P−1
1 (x0)T 0

1,0P0(x0)C0

= P−1
3 (x2)T 0

3,2P2(x2 − x1)T 0
2,1P1(x1 − x0)T 0

1,0P0(x0)C0. (44)

Eq. (44) connects constants C0 and C3 using the matrices T 0
j,j−1 calculated at x = 0

independently of j, and the diagonal matrices Pj(δj), given by the relations (36) and (38),
where δj = xj − xj−1. The edge matrices P0(x0) and P−1

3 (x2) in Eq. (44) can be omitted
while computing the transmission and reflection probability amplitudes, as their only role is to
multiply the amplitudes by phase quotients which disappear while computing the probabilities.
Although these matrices lead to significant modifications of the closed channels in the domains
of x < x0 and x > x3, these channels do not influence the reflection and transition amplitudes.
Transmission and reflection probabilities can thus be computed using a modified transfer matrix,

T 0
3,0 = T 0

3,2P2(x2 − x1)T 0
2,1P1(x1 − x0)T 0

1,0. (45)

The matrices T 0
i,i−1 are equal to the matrices Bi in Eq. (18) calculated, however, for xi−1 = 0.

This speeds up numerical calculations since now the matrix B(i, x = 0) in Eq. (18) have to be
inverted only once. Further, we shall omit the superscript 0 in T and the tilde over C in order
to simplify our notation.

The method presented above is still numerically unstable. The reason for this instability is
the existence of large numerical values of elements of P−

i (δ) for imaginary momenta piN . In
other words, for

Ci =

(

C+
i

C−

i

)

= Ti,i−1Ci−1 =

( T ++
i,i−1

T +−

i,i−1

T −+
i,i−1

T −−

i,i−1

)(

C+
i−1

C−

i−1

)

, (46)
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the source of numerical instabilities are matrix elements T −−

i,i−1
that contain large numbers. There

is, however, a chance for improving the stability, if only its inverse will be used,
(

T −−

i,i−1

)−1
. This

is possible provided that in our numerical algorithm only the so-called scattering matrix will be
applied. For this reason we will show below how to compute the scattering matrix, Sj,i, using
only elements of the transfer matrix, Tj,i. For the transfer matrix Tj,i we have,

(

C+
j

C−

j

)

=

( T ++
j,i T +−

j,i

T −+
j,i T −−

j,i

)(

C+
i

C−

i

)

. (47)

Thus,
C+
j = T ++

j,i C+
i + T +−

j,i C−

i , C−

j = T −+
j,i C+

i + T −−

j,i C−

i . (48)

On the basis of (48) we now want to compute the elements of the Sj,i matrix. This matrix is
supposed to connect the coefficients C±

i and C±

j in the following way,
(

C−

i

C+
j

)

=

( S++
j,i S+−

j,i

S−+
j,i S−−

j,i

)(

C+
i

C−

j

)

. (49)

Using the set of linear equations (48), we easily compute the coefficients C−

i and C+
j on the

left-hand side of equation (49) as functions of the coefficients C−

j and C+
i . We obtain then the

following relations,

C−

i = (T −−

j,i )−1(C−

j − T −+
j,i C+

i ),

C+
j =

(

T ++
j,i − T +−

j,i (T −−

j,i )−1T −+
j,i

)

C+
i + T +−

j,i (T −−

j,i )−1C−

j . (50)

Finally, we compute the elements of the matrix Sj,i,

S++
j,i =− (T −−

j,i )−1T −+
j,i , S+−

j,i = (T −−

j,i )−1,

S−+
j,i =T ++

j,i − T +−

j,i (T −−

j,i )−1T −+
j,i , S−−

j,i = T +−

j,i (T −−

j,i )−1. (51)

As expected, the matrix Sj,i contains only numerically stable elements (T −−

j,i )−1.

It follows from Eq. (19) that the transfer matrix Tj,i can be written as the product of two
transfer matrices, Tj,k and Tk,i (i < k < j),

Tj,i = Tj,kTk,i, (52)

where matrices Tj,k and Tk,i are defined as follows,

Ck = Tk,iCi, Cj = Tj,kCk. (53)

Applying the method presented above, for each of the transfer matrices Tj,k and Tk,i we can now
construct a scattering matrix, Sj,k and Sk,i, respectively. The elements of the scattering matrix
Sj,i can be computed using only elements of Sj,k and Sk,i. Using the notation above, we obtain
the following expressions for the elements of the Sj,i matrix,

S++
j,i =S++

k,i + S+−

k,i (1− S++

j,k S−−

k,i )
−1S++

j,k S−+

k,i , S+−

j,i = S+−

k,i (1− S++

j,k S−−

k,i )
−1S+−

j,k ,

S−−

j,i =S−−

j,k + S−+

j,k S−−

k,i (1− S++

j,k S−−

k,i )
−1S+−

j,k , S−+
j,i = S−+

j,k (1− S++

j,k S−−

k,i )
−1S−+

k,i . (54)

It is clear that the Sj,i matrix is not merely a product of two matrices Sj,k and Sk,i, but rather
a complicated nonlinear composition of them. It is important, however, to note that, despite its
complexity, such a construction of the scattering matrix is numerically stable. This is in contrast
to the transfer matrix method which fails if a system with a large number of discontinuity points
xi is considered. Stability of such an algorithm has been proven in our numerical investigations
by checking that the condition (24) is satisfied with an error smaller than 10−14. Such an
accuracy can never be achieved for systems with a large number of discontinuity points if the
transfer matrix is applied.
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6. Photoemission

In our studies, we focus on essential features of the solid-vacuum interface, as demonstrated by
the Sommerfeld model in which the band structure is neglected. This simplification allows us to
consider a quite general form of the laser field. To be more specific, the solid surface is described
by a continuous step potential,

V (x) = V0g(x/w0), g(x) = 1/(1 + e−x). (55)

The parameter w0 determines the skin depth of a surface. For w0 = 0, the surface potential
represents the step function, commonly used in the Sommerfeld model. In our illustrations, we
take w0 = 5. We apply our theory to the gold surface and assume that the electron effective
mass is close to the free electron mass. The work function and the Fermi energy for the gold
metal are equal to 5.1 eV and 5.53 eV, respectively. This means that the constant V0 above (as
the sum of the work function and the Fermi energy) equals 10.63 eV.

The surface potential described above can be generalized further to meet conditions suitable
for other solids. In particular, one can take into account the space-dependent effective mass of
electrons in semiconductor heterostructures or metals with effective masses different from the
free electron mass.

On the other hand, the form of the laser field is assumed to depend on both space and
time coordinates. Since, for laser pulses of duration ∼ 30 fs and 800 nm wavelength, the
monochromatic approximation works well, we use the following form of the laser electric field:

E(x, t) = E0(x) sin(ωt) = E0fL(x)
(

1 + ǫfP (x)
)

sin(ωt), (56)

where

fL(x) = g(x/ζL − aL)g(bL − x/µL), fP (x) = g(x/ζP − aP )g(bP − x/µP ). (57)

The parameter ǫ defines the plasmon-enhanced part of the laser field. We choose the Ti:sapphire
laser beam of frequency ω = 1.5498 eV (λ = 800 nm). This means that, inside the solid, the laser
field intensity averaged over the time period decays exponentially, I(x) ∼ e2x/ζL . On the other
hand, in vacuum, it stays constant close to the surface, and then again decays exponentially.
In this way, we can mimic a real physical situation in which the radiation-filled space is finite.
In our illustrations, we take ζL = 40, which means that the penetration depth of the laser field
equals ζL/2 = 20. The parameter aLζL describes the distance in a solid at which the intensity
is not reduced substantially. On the other hand, bLµL corresponds to the laser focus diameter
in vacuum, whereas µL alone determines the intensity reduction rate outside the focus. Similar
parameters with the subscript P refer to the plasmon-enhanced part of the laser field. The
remaining parameters have been chosen as follows: aL = 3, bL = 20, µL = 100, aP = 1, ζP = 8,
bP = 4, µP = 20, and ǫ = 0, . . . , 5. All dimensional parameters are in atomic units.

In our discussion below, the laser field intensity is characterized by the dimensionless
parameter ξ = Up/ω, where Up = E2

0/(4ω
2) is the ponderomotive energy of electrons in the

monochromatic plane wave of frequency ω; hence E0 = 2ω
√
ωξ. In Fig. 1 we draw the space-

dependence of the continuous step potential V (x) and the electric field amplitude E0(x) for ǫ = 5
and ξ = 0.1.

The total photoemission probability is equal to

PT =
∑

N>Ntr

m0qN
mLp0

|TN |2. (58)

We plot it in Fig. 1 as a function of the electron kinetic energy for ξ = 0.1 and for six values of ǫ.
We clearly see the multi-photon structure in this distribution, i.e., the total probability jumps
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Figure 1. The continuous step potential (upper panel on the left) and the space-dependent
electric field amplitude of the laser field (lower panel on the left). The atomic units of length,
energy, and electric field strength are xat ≈ 0.053 nm, Eat ≈ 27.21eV, and Eat ≈ 5.14×1011V/m,
respectively. In the right panel, we show total photoemission probabilities as functions of the
kinetic energy of electrons for ξ = 0.1 and for six values of ǫ.

by few orders of magnitude if a smaller number of laser photons is sufficient for photoemission.
As expected, the plasmon effect usually increases the photoemission probability. Moreover, the
energy of the multi-photon channel opening increases with increasing ǫ, which is due to the
increase of the space-dependent ponderomotive energy of the laser field. The significance of this
effect for the tunneling phenomena is going to be discussed in due course.

7. Conclusions

As mentioned above, our numerical algorithm is convergent provided that a sufficient number
of discrete points is introduced. For systems considered here, this number should not be smaller
than 100. If the laser field is very weak, this does not create significant numerical problems,
except that calculations become longer. However, when the laser field is sufficiently intense, the
algorithm based on the transfer matrix is unstable. This instability is due to the existence of
closed channels, which introduce into numerical calculations very small and very large numbers
at the same time. The augmenting precision significantly slows down the calculation and does
not diminish the problem. We have found that it is possible to make this algorithm numerically
stable by applying non-linear matrix transformations, without introducing higher precisions.

Illustrations presented in this paper show that photoemission of electrons can be changed
significantly by applying nonperturbative, oscillating in time and space-dependent electric fields.
The efficiency of the numerical algorithm opens up the possibility of investigating surface
phenomena in the presence of more realistic laser pulses that gradually decrease within solids
and extend on a mesoscopic scale in vacuum.
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[23] Lévy-Leblond J-M 1992 Eur. J. Phys. 13 215
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