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Abstract. Ionization of hydrogen-like ions by intense, circularly polarized laser pulses is
analyzed under the scope of the relativistic strong-field approximation. We show that, for
specific parameters of the laser field, the energy spectra of photoelectrons present a broad
region without interference (supercontinuum) which can be controlled by modifying the laser
field intensity. The physical interpretation of the process is developed according to the Keldysh
theory, emphasizing the importance of the complex-time saddle point contributions to the
total probability of photoionization. The corresponding polar-angle distributions present an
asymmetry attributed to radiation pressure effects.

1. Introduction

In nonlinear optics, the supercontinuum generation refers to the process for which a narrow-
band laser field presents a considerable spectral broadening, resulting in radiation frequencies
with a large bandwidth while evincing temporal and/or spatial coherence [1, 2]. In a similar
way, the concept of supercontinuum can be applied to describe the energy spectrum of electrons
emitted by photoionization of atoms or ions by strong laser fields. When the energy spectra of
photoelectrons exhibit broad structures without important modulations in the scale of tenths
(or even hundreds) of laser photon energies, it is considered to present a supercontinuum.

The ionization by strong laser fields is typically dominated by interference effects. The latter
are demonstrated, for instance, when the spectrum of photoelectrons consists of series of equally
separated peaks. This is also true when the driving pulse comprises just few oscillations. When
the monochromatic plane-wave approximation is considered, those peaks are separated by the
laser carrier frequency and are commonly recognized as multiphoton peaks. In the pioneering
work by Keldysh [3] (see the review by Popov [4]), it was shown that the total amplitude
of photoionization by strong fields contains the contribution of multiple factors arising from
different complex-time saddle points. Those contributions lead to pronounced interference effects
and to the formation of the aforementioned peaks in the energy spectrum of photoelectrons.

According to the Keldysh theory, if just one complex-time saddle point contributes
predominantly to the total probability of photoionization, the interference effects are expected to
be suppressed (ionization without interference) leading to the creation of a supercontinuum. On
the contrary, if two or more saddle points present similar contributions, interference dominates
the process with the consequent formation of series of peaks in the spectra of photoelectrons.

The aim of this paper is to investigate the interference-free ionization process for the
relativistically intense and short laser pulses.
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In this paper we set ~ = 1. In our numerical calculations we use relativistic units
with ~ = me = c = 1, where me is the electron rest mass and c is the speed of light.
Moreover, the relativistic scalar product between two arbitrary four-vectors a and b is written
as a · b = aµbµ = a0b0 − a1b1 − a2b2 − a3b3 and the Feynman notation /a = γ · a = γµaµ,
where γµ are the Dirac gamma matrices, is used. As usual, ū = u†γ0. When necessary, we
employ the so-called light-cone variables, i.e., for an arbitrary unit vector n and an arbitrary
four-vector a, we define a‖ = n · a, a− = a0 − a‖, a+ = (a0 + a‖)/2, and a⊥ = a− a‖n. Thus,
a · b = a+b− + a−b+ − a⊥ · b⊥ and d4x = dx+dx−d2x⊥.

2. Theory

Let us consider the interaction between a relativistically-intense laser field and a hydrogen-like
ion. The exact probability amplitude of ionization is (see, Ref. [5])

Afi = −i

∫

d4xe−i(E0/c)x0
Ψ̄f(x)e /AR(x)Ψi(x), (1)

where the bispinor Ψi(x) describes the electron bound state of energy E0, Ψf(x) represents the
exact scattering state, Aν

R(x) is the four-vector potential describing the laser pulse, and e < 0
is the electron charge.

While the ground state wavefunction for hydrogen-like systems is known exactly (see, e.g.,
Ref. [6]), the scattering state Ψf(x) has to be approximated, specially when high intensity
laser fields are involved. Assuming that the kinetic energy of the photoelectron characterized
by the asymptotic momentum p is much larger than the ionization potential, i.e., Ep =
√

(mec2)2 + (cp)2 − mec
2 ≫ mec

2 − E0, the scattering state can be approximated by means
of the Born expansion. In the zeroth order, such approximation consists in replacing the exact

state Ψf(x) in Eq. (1) by the solution of the Dirac equation in the laser field Ψ
(0)
pλ(x), which does

not account for the interaction with the atomic potential,

(

i/∂ − e /AR(x)−mec
)

Ψ
(0)
pλ(x) = 0. (2)

Here, the subscript λ = ± stands for the electron spin polarization. The solutions of Eq. (2)
are known as the Volkov states and can be derived exactly for laser fields in the plane-wave
front approximation. This is the essence of the relativistic strong-field approximation (RSFA).
Therefore, the probability amplitude of ionization under the RSFA [now denoted as A(p, λ;λi)],
takes the form

A(p, λ;λi) = −i

∫

d3q

(2π)3

∫

d4x e−iq·xΨ̄
(0)
pλ(x)e /AR(x)Ψ̃i(q), (3)

where Ψ̃i(q) represents the Fourier transform of the atomic bound state Ψi(x). In Eq. (3) we
have introduced q = (q0, q) = (E0/c, q), which is not a four-vector as it does not transform
properly under the relativistic Lorentz transformations. Nevertheless, this notation helps us
to simplify the formulas presented below. Note that the probability amplitude of ionization
A(p, λ;λi) depends on the initial and final spin states λi and λ, respectively, which are denoted
as ’+’ for a spin up and ’−’ for a spin down.

Up to now, our considerations have been very general. In the remaining part of this paper the
calculations are going to be carried out in the velocity gauge. In order to proceed, we model the
electromagnetic potential describing the laser field using the plane-wave front approximation,

AR(x) ≡ A(φ) = A0[ε1f1(φ) + ε2f2(φ)], (4)
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where φ = k · x = k0x−, k = k0n = k0(1,n), k0 = ω/c, and ω = 2π/Tp. In our notation
ω represents the fundamental frequency of the pulse and Tp corresponds to its duration. The
polarization of the laser field is determined by two real and normalized four-vectors, εj ≡ (0, εj),
which are perpendicular to the pulse propagation direction (i.e., k · εj = −k · εj = 0). The two
shape functions, fj(φ), are real, with continuous second derivatives, and vanish for φ < 0 and
φ > 2π. The unitary vector n represents the direction of propagation of the laser pulse.

The Volkov solution for the vector potential (4) is given by [5, 7]

ψ
(+)
pλ (x) =

√

mec2

V Ep

(

1 +
mecµ

2p · k

[

f1(k · x)/ε1/k + f2(k · x)/ε2/k
]

)

e−iS
(+)
p (x)u

(+)
pλ , (5)

where

S(+)
p (x) = p · x+

∫ k·x

0
dφ

[

−
mecµ

p · k

(

ε1 · pf1(φ) + ε2 · pf2(φ)
)

+
(mecµ)

2

2p · k

(

f21 (φ) + f22 (φ)
)

]

. (6)

In Eqs. (5) and (6), the superscript (+) indicates that ψ
(+)
pλ (x) is a positive-energy solution

of the Dirac equation in the laser field [Eq. (2)], V represents the quantization volume, and
p = (p0,p) = (Ep/c,p) is the on-mass-shell four-vector. In addition, the Dirac free particle

bispinors u
(+)
pλ are normalized such that ū

(+)
pλ u

(+)
pλ′ = δλλ′ . Note that we have introduced the

dimensionless relativistically invariant parameter µ, defined as

µ =
|e|A0

mec
. (7)

This parameter is related to the relativistic character of ionization. If µ ≪ 1 then the
quantum mechanical evolution of the field-particle interaction can be analyzed according to
the Schrödinger equation. In contrast, if µ ≈ 1 or µ > 1, which is the case studied in this paper,
relativistic effects need to be accounted for and the time-evolution of the system needs to be
studied according to the Dirac equation.

As it is shown in Ref. [5], the probability amplitude of ionization [Eq. (3)] for a laser pulse
described by Eq. (4) can be written, in the velocity gauge, as

A(p, λ;λi) =

∫

d3q

(2π)3

∫

d4xeiS
(+)
p (x)−iq·xMλ,λi

(k · x), (8)

where

Mλ,λi
(k · x) = imecµ

√

mec2

V Ep

[

f1(k · x)B
(1,0)
pλ;λi

(q) + f2(k · x)B
(0,1)
pλ;λi

(q)

−
mecµ

2p · n

(

[f1(k · x)]
2 + [f2(k · x)]

2
)

B
(0,0)
pλ;λi

(q)
]

. (9)

Here, in order to simplify the notation, we have introduced the following functions related to the
Fourier transform of the ground-state wavefunction Ψi(x) and the Dirac free particle bispinors,

B
(0,0)
pλ;λi

(q) = ū
(+)
pλ /nΨ̃i(q), B

(1,0)
pλ;λi

(q) = ū
(+)
pλ /ε1Ψ̃i(q), and B

(0,1)
pλ;λi

(q) = ū
(+)
pλ /ε2Ψ̃i(q). (10)

Now, defining the laser-dressed momentum p̄ as [5, 8, 9, 10]

p̄ = p−
mecµ

p · k
(ε1 · p〈f1〉+ ε2 · p〈f2〉)k +

(mecµ)
2

2p · k
(〈f21 〉+ 〈f22 〉)k, (11)
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the function S
(+)
p (x) in Eq. (8) is rewritten as

S(+)
p (x) = p̄+x− + p−x+ − p⊥ · x⊥ +Gp(k

0x−), (12)

where

Gp(φ) =

∫ φ

0
dφ′

[

−
mecµ

p · k

(

ε1 · p(f1(φ
′)− 〈f1〉)

+ ε2 · p(f2(φ
′)− 〈f2〉)

)

+
(mecµ)

2

2p · k

(

f21 (φ
′)− 〈f21 〉+ f22 (φ

′)− 〈f22 〉
)

]

. (13)

Note that in Eqs. (11) and (13) the average of a function F (φ), which vanishes for φ < 0 and
φ > 2π, is given by

〈F 〉 =
1

2π

∫ 2π

0
dφF (φ). (14)

According to Ref. [5], the multidimensional integral in Eq. (8) can be treated analytically
with the help of the following Fourier transforms defined for j = 1, 2 and 0 6 φ 6 2π,

[

f1(φ)
]j
exp[iGp(φ)] =

∞
∑

N=−∞

G
(j,0)
N e−iNφ, (15)

[

f2(φ)
]j
exp[iGp(φ)] =

∞
∑

N=−∞

G
(0,j)
N e−iNφ. (16)

Hence, the probability amplitude of ionization A(p, λ;λi) can be represented as

A(p, λ;λi) = imecµ

√

mec2

V Ep

D(p, λ;λi), (17)

were D(p, λ;λi) involves an infinite sum,

D(p, λ;λi) =
∞
∑

N=−∞

e2πi(p̄
+−q+−Nk0)/k0 − 1

i(p̄+ − q+ −Nk0)

[

G
(1,0)
N B

(1,0)
pλ;λi

(Q) +G
(0,1)
N B

(0,1)
pλ;λi

(Q)

−
mecµ

2p · n
[G

(2,0)
N +G

(0,2)
N ]B

(0,0)
pλ;λi

(Q)
]

, (18)

and
Q = p+ (q0 − p0)n. (19)

Taking into account Eq. (17) and keeping in mind that the final density of electron states,
according to our current normalization conventions, is equal to V d3p/(2π)3, the spin-dependent
probability of ionization is given by

P (λ;λi) = µ2
(mec)

3

(2π)3

∫

d3p

p0
|D(p, λ;λi)|

2. (20)

On the other hand, the initial-spin-averaged triply-differential probability distribution, which is
obtained by averaging the values corresponding to the initial spin states and summing up the
values corresponding to the final spin states, in atomic units, takes the form

P(p) =
α2mec

2

2

∑

λ,λi=±

d3P (p, λ;λi)

dEpd2Ωp

≡
α2µ2

2

(mec)
4

(2π)3

∑

λ,λi=±

|p| · |D(p, λ;λi)|
2, (21)
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where α = e2/(4πε0c) is the fine-structure constant.
Up to now we have calculated the probability distribution of photoionization of hydrogen-like

systems in the RSFA framework and the velocity gauge. The fact that short laser pulses were
considered assures that the electron ground-state wavefunction is well-defined and unperturbed
before the interaction begins, even for arbitrarily intense laser fields. In contrast, when the
infinite plane-wave approximation is used (see, e.g., Refs. [11, 12, 13]), the analysis is restricted
to the interaction of highly charged positive ions with fields of moderate intensity. This is in
order to guarantee that the ground-state wavefunction is not heavily distorted by the action of
the oscillating laser field.

Even though Eqs. (17) and (18) allow us to calculate the energy and angular probability
amplitude of ionization for given initial and final spin states, they do not offer a simple insight
into the physics behind the process. For this reason, in the next Section, we introduce the saddle-
point analysis of the integrals in Eq. (8) with the sole purpose of interpreting our numerical
results.

3. Saddle-point approximation

To perform the saddle-point analysis of the integrals in the probability amplitude of ionization,
we rewrite Eq. (8) in terms of the light-cone variables,

A(p, λ;λi) =
1

k0

∫ 2π

0
dφ

∫

d3q

(2π)3

∫

dx+d2x⊥ei(p
−−q−)x+−i(p⊥−q⊥)·x⊥

eiG(φ)Mλ,λi
(φ), (22)

where Mλ,λi
(φ) is defined by (9) and

G(φ) ≡ G(g0, g1, g2, h;φ) =

∫ φ

0
dφ′

[

g0 + g1f1(φ
′) + g2f2(φ

′) + h
(

f21 (φ
′) + f22 (φ

′)
)]

. (23)

Here we have introduced the functions

g0 =
p+ − q+

k0
, h =

(mecµ)
2

2k · p
, and gj = −mecµ

εj · p

k · p
, (24)

for j = 1, 2. The integration over dx+d2x⊥ leads to the conservation relations

p− = q− and p⊥ = q⊥, (25)

and allows us to perform the integration over d3q. Finally, the probability amplitude of ionization
takes the form

A(p, λ;λi) =
1

k0

∫ 2π

0
dφ eiG(φ)

[

Mλ,λi
(φ)

]

q=Q
, (26)

where Q is defined in Eq. (19). Note that, according to the relations (25), g0 = (p0 − q0)/k0

and it only depends on the energy of the initial and final states.
As the function eiG(φ) is considered to be fast oscillating compared to the remaining parts of

the integrand in Eq. (26), the standard saddle-point method can be used to approximate this
expression. The saddle points are obtained by solving the equation

dG(φ)

dφ
= 0, (27)

which, in general, has complex solutions. The only saddle points that contribute to the integral,
denoted as φs, are those which satisfy the relation ImG(φs) > 0. With that in mind, the
probability amplitude of ionization is approximated as

A(p, λ;λi) =
1

k0

∑

s

eiG(φs)

√

2πi

G′′(φs)

[

Mλ,λi
(φs)

]

q=Q
. (28)
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By analyzing the previous expression, it is clear that the interference pattern in photoionization
arises when two or more saddle points contribute importantly to the probability amplitude
A(p, λ;λi). In contrast, if just one of them is dominant over a range of photon energies and
emission angles [i.e., if the ImG(φs) is considerable small compared to the corresponding value
of the remaining saddle points], then no strong interference effects are expected. Therefore, we
anticipate that the supercontinuum should appear in the energy range for which just one saddle
point contributes the most to Eq. (28). This was demonstrated for the case of fixed initial and
final spin states in Ref. [5].

4. Numerical calculations

We consider the photoionization of He+ ions (with atomic number Z = 2) by a relativistically-
intense and circularly polarized laser pulse. The latter is characterized by the electric field shape
functions with a sin2 envelope defined as

Fj(φ) = F0(φ, δj , χ) cos(δ + δj), (29)

with

F0(φ, δj , χ) = N0 sin
2
(φ

2

)

sin(Noscφ+ δj + χ) (30)

for 0 < φ < 2π and 0 otherwise. Here, Nosc represents the number of field oscillations within
the pulse, χ is the carrier-envelope phase, δ and δj determine the polarization properties of the
pulse, and N0 is a normalization constant chosen such that the average intensity of the field
is independent of the number of cycles (see, Ref. [5]). The function F0, explicitly written as a
function of time, is

F0(r, t, δj , χ) = N0 sin
2
( 1

2Nosc
ωL(t− n · r/c)

)

sin(ωL(t− n · r/c) + δj + χ), (31)

for 0 < t− n · r/c < Tp and it is 0 otherwise. Here we have introduced the carrier frequency of
the laser field, ωL = Noscω.

For the numerical calculations presented below we have chosen a circularly polarized laser
pulse (δ1 = 0, δ2 = π/2, and δ = π/4), propagating along the z-axis (n = ez), and comprising
four field oscillations within the sin2 envelope (Nosc = 4). The polarization vectors are ε1 = ex
and ε2 = ey. The carrier-envelope phase is χ = π/2 and the carrier frequency is ωL = 20eV.

As the electric field is related to the vector potential by the relation E(φ) = −∂tA(φ), the
shape functions f1(φ) and f2(φ) in Eq. (4) are calculated as

fj(φ) = −

∫ φ

0
dφ′Fj(φ

′), (32)

with j = 1, 2.
In Fig. 1, we present the time evolution of the tips of the vector potential (left panel) and

electric field (right panel) in the xy-plane (which is perpendicular to the laser field propagation
direction) for the pulse described above with an average intensity of I = 4 × 1020 W/cm2.
Both curves start at the origin of coordinates and evolve counterclockwise during the ramp up
(blue color) and ramp down (red color), and are presented in relativistic units. The parameter
AS = mec/|e| and the ratio A(φ)/AS is given by

A(φ)

AS
= µ[ε1f1(φ) + ε2f2(φ)]. (33)

Note that, for this particular intensity, |A(φ)|/AS reaches values larger than the unity, so one
needs to consider the problem in a fully relativistic way. On the other hand, the parameter
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Figure 1. (Color online) Trajectories of the tips of the electromagnetic vector potential A(φ)
(left panel) and the electric field vector E(φ) (right panel), in relativistic units, for the laser pulse
discussed below. All trajectories start from and end up at the origin (0, 0). In order to show the
direction of the time-evolution, we mark with colors blue and red the ramp up and ramp down
parts of the laser pulse, respectively. We observe the azimuthal symmetry of the electromagnetic
potential, ϕ → π − ϕ mod 2π or (x, y) → (−x, y), and of the electric field, ϕ → −ϕ mod 2π
or (x, y) → (x,−y). The time-averaged intensity of the laser pulse is I = 4× 1020 W/cm2, the
carrier laser frequency is ωL = 20 eV, and Nosc = 4. Note that for these parameters, µ > 1.

ES = m2
ec

3/|e|, known as the Sauter-Schwinger critical electric field (see, Refs. [5, 14] and
references therein), is related to the probability of electron-positron pair production. As the
ratio |E(φ)|/ES ≪ 1, such effect can be ignored in our calculations.

4.1. Energy and polar-angle spectra of photoelectrons

In the upper panels of Fig. 2 we present the energy spectra of photoelectrons calculated according
to Eq. (21). The results are plotted for the electron asymptotic momentum p with azimuthal
angle ϕp = 0 and polar angles θp = 0.5π (left panel) and θp = 0.48π (right panel). While
the averaged intensity is I = 2 × 1020 W/cm2, the remaining parameters are the same as in
Fig. 1. We observe that the energy spectra of photoelectrons present a single and very broad
structure which ranges from 3 keV up to 20 keV (corresponding to hundreds of single-photons
energy), without the distinctive signatures of interference; the supercontinuum. Moreover,
the distributions exhibit a maximum located at positions depending on the polar angle. For
θp = 0.5π, the spectral maximum appears at electron kinetic energies close to 10.96 keV, whereas
for θp = 0.48π it is shifted to 11.17 keV.

It follows from our analysis in Sec. 3 and the results shown in Ref. [5] that the presence of a
supercontinuum in the energy distributions can be related to absence of interference effects, i.e.,
to the existence of a single saddle point which contributes the most to the probability amplitude
of ionization (28). In the lower panels of Fig. 2 we present the energy dependence of ImG(φs)
for all relevant saddle points. It can be seen that, for the parameters chosen in our calculations,
there is just one of such points for which ImG(φs) is much smaller than the others (magenta
curves in the lower panels). Note that its minimum is located around the region for which the
probability distribution is maximal.

In Fig. 3, we present the same as in Fig. 2 but for I = 4× 1020 W/cm2 and kinetic energies
ranging from 10 keV up to 35 keV. One can see that, for those parameters, supercontinua are
also formed. This time the maxima are located at 20.78 keV for θp = 0.5π and 21.83 keV
for θp = 0.48π. Therefore, we conclude that the position of the maximum in the energy
spectra of photoelectrons scales linearly with the averaged intensity of the laser pulse (see,
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Figure 2. (Color online) Initial-spin-averaged energy spectra of photoelectrons (upper row) for
the time-averaged intensity I = 2 × 1020 W/cm2 and for the emission angles indicated in the
figure. In the lower row, the appropriate plots of ImG(φs) for all five relevant saddle points are
shown.

the results corresponding to I = 1020 W/cm2 presented in Ref. [5]). Note that just one saddle
point contributes the most to the probability amplitude of ionization and ImG(φs), related
to this particular saddle point, has a minimum around the region where the distribution is
maximum (magenta curves in the lower panels). Moreover, comparing Figs. 2 and 3, one can
see a considerable reduction of the maximum probability distribution (from one to two orders
of magnitude, depending on the polar angle), which can be attributed to stabilization against
ionization (see, e.g., Refs. [15, 16, 17, 18, 19, 20, 21]).

In Fig. 4, the polar-angle spectra of photoelectrons at fixed kinetic energy are presented.
The constant azimuthal angle has been chosen to be ϕp = 0 and the averaged intensities are
I = 2× 1020 W/cm2 and I = 4× 1020 W/cm2 (upper left and right panels, respectively). One
can see that, in both cases, a broad structure is formed. Additionally, as it was discussed
in Refs. [5, 19, 22], the non-relativistic SFA predicts a maximum value of the distribution
at θp = 0.5π for circularly polarized laser fields, which is not the case in our numerical
calculations. One can see from the upper left panel in Fig. 4 that the actual maximum is
located at θp = 0.467π, i.e., it is shifted towards the direction of propagation of the laser field.
Moreover, when the intensity is increased (upper right panel), the shifting is more pronounced
and the maximum appears at θp = 0.455π. Such effect has been attributed to the radiation
pressure exerted by the laser field on the emitted photoelectrons [5, 10, 19, 22]. On the other
hand, one can clearly see that the maximum value of the distribution depends on the laser field
intensity. More precisely, the maximum scales as the inverse of the averaged intensity squared,
which is another indication of stabilization against ionization. Finally, in the lower panels of
Fig. 4 we present the plots of ImG(φs) for all relevant saddle points. As expected, just one
of them contributes importantly to the probability amplitude of ionization (magenta curves in
the lower panels). In this case, their minima appear near to the angular regions for which the
distribution acquires maximum values.
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Figure 3. (Color online) The same as Fig. 2 but for the time-averaged intensity I =
4× 1020 W/cm2.
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Figure 4. (Color online) Initial-spin-averaged polar-angle distributions (upper row) for ϕp = 0
and for two time-averaged intensities: I = 2 × 1020 W/cm2 (left column, maximum for
θp = 0.467π) and I = 4× 1020 W/cm2 (right column, maximum for θp = 0.455π) with energies
indicated in the figure. The maximum of these distributions scales as the inverse of intensity
squared. In the lower row, we present the plots corresponding to ImG(φs) for all five relevant
saddle points.
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5. Conclusions

We have analyzed the probability distribution of photoelectrons obtained from the interaction of
relativistically-intense and short laser pulses with hydrogen-like ions under the RSFA framework.
Our treatment is applicable even to very light ions, as it was illustrated for He+, due to the
fact that the ground-state wavefunction is well-defined before the interaction with the pulse.
Furthermore, we have demonstrated that, by adjusting the parameters of the driving laser field,
the energy spectrum of photoelectrons can exhibit a supercontinuum. Using the saddle-point
approximation, we have related such broad structure to energy regions without interference (i.e.,
regions for which just one saddle point contributes importantly to the probability amplitude of
ionization). Contrary to the results presented in Ref. [5], we have considered the initial-spin-
averaged probability distributions, without restricting ourselves to fixed initial and final spin
states.

In our numerical calculations we have shown that the position of the maximum of the energy
spectra of photoelectrons increases linearly with the averaged intensity of the driving field. As
well, its maximum value decreases with intensity due to stabilization against ionization. The
polar-angle distribution presents a maximum at θp < 0.5π due to the radiation pressure exerted
by the laser field. Moreover, an increase of the averaged intensity of the pulse leads to a maximum
located at smaller polar angles.
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