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Abstract. Numerical investigation of laser induced shock wave (SW) propagation into bulk 
aluminium target with and without the effects of electron thermal radiation (ETR and No-ETR) 
is demonstrated using MULTI-fs 1D-code over intensity range 1010 – 1011 W/cm2

. The 
radiation emitting from the plasma is observed to show negligible effects on the SW 
propagating into aluminium target for low energy (25 mJ) and significant effects at high energy 
(175 mJ) which was found to be dominant up to 50 ns of time. The observations show that two 
SW have been launched on to the target surface: one during the pulse duration termed as 
primary SW (PSW) and the other immediately after the laser pulse termination termed as 
secondary SW (SSW). The effects of ETR were found dominant on SSW compared to that on 
PSW for 175 mJ. The PSW and SSW found to coalesce at around 30-40 ns and move as a 
single SW after these time scales. The resultant pressure after coalesce is higher than the 
individual ones before coalesce for 175 mJ. The PSW pressures at 25 mJ and 175 mJ were 
found to be ~1.5 GPa and ~7 GPa, respectively that were launched at 10 ns and 7 ns.  

1.  Introduction 
When a laser beam of sufficiently high intensity is focused on to the target surface, the breakdown of 
the medium occurs and subsequently formation of plasma takes place due to coupling of laser energy 
to the target [1]. The plasma then ablates from the target and expands into background gas by 
absorbing the remaining incoming laser energy until the laser pulse terminates. Due to the ablation, the 
shock wave (SW) or compression wave (CW) is launched into the target in order to conserve the 
momentum created by the ablated material [1, 2]. Due to transient laser intensity pulse, the SW 
launched onto the target also has a transient nature making it a very efficient tool to study the dynamic 
response of materials.  Moreover, with the laser driven shock waves (LDSW) very high pressures over 
very short durations of time (pulse durations) can be generated unlike the flyer plate impact technique. 
Due to very high pressures generated at very short times, the impulses will be very high making it 
efficient technique to generate the equations-of-state [3] of the material. The response of the material 
to LDSW loadings can give rise to obtain the parameters such as pressure (P), particle (up) and shock 
velocity (Ush), density ( ) and specific internal energy (Esp) inside the target. The SW pressures 
launched onto the target depends on various parameters such as target properties, incident laser 
intensity, wavelength, pulse duration, background gas and also on the radiation emitted from the 
ablated plasma. The effects of ETR on the ablated plasma and SW expanding into the background 
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medium for different laser intensities is investigated [4,5] and observed that the radiation plays an 
important role on the plasma and SW dynamics with the effects becoming significant with increasing 
laser energy. Many efforts have been made on the LDSW propagating into solid targets [2, 3, 6] and 
found some of the important aspects [2, 3, 7-9]. 

In this paper, the numerical simulation of LDSW propagation through bulk aluminum target whose 
thickness taken to be ~ 2 mm is presented. The intensities ranging between 1010 – 1011 W/cm2 were 
used to launch the SW on to the target surface and the SW dynamics was investigated over the time 
scales of up to 1000 ns considering with and without electron thermal radiation effects (ETR and No-
ETR). The numerical simulations are carried out using modified 1D-radiation hydrodynamic code 
MULTI-fs [5, 10] for planar, cylindrical and spherical geometries.  

2.  Simulation methodology  
The LDSW in the experiments were launched using the second harmonic of Nd:YAG laser with the 
excitation wavelength of 532 nm and pulse duration of 7 ns (FWHM). The detailed setup of the 
experiments presented elsewhere [11, 12]. The simulations have been performed using modified 
MULTI-fs [5] 1D-RHD code. The laser ablative shock waves (LASW) from Al target propagating into 
atmospheric air obtained from the simulations are validated [5,11] with the experimental results. 
Hence the numerical results presented here are the SW propagation into Al target obtained with same 
input parameters as that in experiments considering the effect of ablation of Al in ambient air.  In 
figure 1, the origin represents the target surface (air-target interface) and the left portion of surface 
represents the Al target. Similarly the right side represents the background air. The laser is allowed to 
incident from right to left on to the target surface (origin). 

3.  Results and Discussion 

3.1.  Effects of ETR on SW propagating into Al 
Figure 1 compares the pressure of shock wave propagating into Al target considering ETR and No-
ETR effects for 25 mJ and 175 mJ at 14 and 30 ns, respectively. The origin in figure represents Al-air 
interface where the laser is incident onto the target surface from right to left.  

 

 
Figure 1. Comparison of shock wave propagating into Al target with ETR and No-ETR effects for 25 
mJ and 175 mJ input laser energies at 14 and 30 ns, respectively.    

          
The peak pressures at 25 mJ with ETR and No-ETR found to have same values at both time 

scales. Whereas with 175 mJ, the pressures are observed to differ slightly at 14 ns, but differ largely at 
30 ns. The percentage of laser absorption by the ablated plasma increases with increasing laser energy. 
Due to increase in the absorption, the electron number density and electron temperatures increases 
largely within the ablated plasma, also simultaneously the radiation emitting from the plasma increases 
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due to collisions with the ions. The emitted radiation propagates into ambient air and also into the 
target. The influence of the ETR effect on the SW propagating in to ambient air validated with 
experimental data is reported in [5] and observed that the ETR effect become dominant with 
increasing input laser energy. It is reported [13] that the radiation emitted by the plasma close to the 
target surface is mostly due to free-free transitions. Since the temperature in the laser affected region 
within the target increases abruptly, the radiation penetrating into the target increases to over few 
orders of laser wavelength. This is due to the opacities (Rosseland and Planck) [10] of the material 
being dependent on temperature and mass density. Since the emissions coming out of the plasma 
increases in case of 175 mJ, the radiation influence on the SW propagating into targets also becomes 
prominent at these energies. Hence the pressures were found to have higher values with ETR (~ 2.75 
GPa) compared No-ETR (~ 2.3 GPa) at 30 ns. However, the influence of the radiation diminishes 
quickly at around 50 ns and the SW pressures become similar with ETR and No-ETR.  

3.2.  Formation and coalescence of the primary and secondary shock wave 
In figure 2(a & b) it is clearly visible that two SW emanate inside the Al target. The first one 
represents the primary shock wave (PSW) that is originated during the initial breakdown of the target 
within the laser pulse duration. The second one represents the secondary shock wave (SSW) originated 
immediately after the termination of the laser pulse. During the initial breakdown of the material the 
plasma expands into the ambient air creating a momentum onto the surface that propagates in the form 
of PSW into the target. The PSW in case of 25 mJ (figure 2(a)) is observed launching at 10 ns during 
trailing edge of the laser pulse. Whereas at 175 mJ (figure 2(b)) it occurs at 7 ns during leading edge 
of the pulse. After the breakdown occurs, the plasma absorbs the remaining laser energy and expands 
continuously into ambient air until laser pulse terminates. Since the laser interaction time with the 
ablated plasma is more in case of 175 mJ, the plasma attains very high pressures and temperatures 
leading to the generation of SSW pressures higher than the PSW. The PSW and SSW pressure at 20 ns 
with 25 mJ found to be ~ 0.2 GPa and ~ 0.6 GPa, respectively.  

 

 
Figure 2. Propagation of the primary and secondary shock wave pressure into Al target at (a) 25 mJ, 
(b) 175 mJ over the time scales 7 to 40 ns and (c) into ambient air for 175 mJ.                                                                   

 
Similarly, with 175 mJ it is found to be ~2 GPa and ~3.5 GPa, respectively. At both the energies it is 
observed that the two SW (PSW and SSW) coalesce at some point of time during their propagation 
into target. In the case of 25 mJ, since the strength of SSW is weak compared to PSW, the SW 
coalesces weakly at around 40 ns. While at 175 mJ, since the SSW strength is more than the PSW the 
propagation speed will be higher than the PSW. Hence the SSW quickly catches the PSW and 
coalesces at little early times of around 30 ns. During the coalescence time with 25 mJ, the resultant 
peak pressure is found have same value as that of PSW before coalescence, whereas with 175 mJ it is 
found to have higher value than the individual SW before coalescence. Since the two SWs have been 
generated in to the target correspondingly the SWs will also be generated in the ambient air (shown in 
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figure 2(c)) in order to conserve the momentum. The SWs propagating in air also coalesce at some 
point of time where during this time the SW loses its planarity and transfers to the cylindrical nature 
[5]. The laser ablative shock wave from Al propagating into ambient air is also observed to show an 
increased velocity at latter time scales [11].  

In figure 3 (a  & b), the negative particle velocities (up) signifies the propagation direction of the 
SW and particles propagation into Al target. It is obvious from figure 3 (a & b) that, as the pressure 
increases the particles behind the shock front gain high velocities which is due to high compression of 
the material particles by the SW. The particle motion follow similar trend as that of the pressure (PSW 
and SSW) observed in figure 2 (a  & b). The particle velocities (up) behind the PSW at 25 mJ (figure 3 
(a)) were observed to decrease from ~ 0.28 - 0.07 km/s and behind the SSW from ~ 0.06 - 0.05 km/s 
over 10 – 40 ns and 20-40ns, respectively. Similarly, at 175 mJ (figure 3 (b)) up behind PSW it is 
decreased from ~ 0.85 - 0.4 km/s over 7 – 40 ns and behind SW from ~ 0.6 - 0.4 km/s over 20 – 40 ns.  
 

 
Figure 3. Particle velocities behind the primary and secondary shock wave at (a) 25 mJ and (b) 175 
mJ over the time scales 7 to 40 ns. 

3.3.  Temporal evolution of pressure and particle velocity 
In figure 4 (a & b) the temporal evolutions of the pressure and particle velocities is presented for 175 
mJ over the time scales of 7 – 1000 ns considering the effects of ETR.  
 

 
 

Figure 4. (a) pressure of the SW and (b) particle velocity behind the SW propagating into Al target    
for the input laser energy of 175 mJ over the time scales of 7 to 40 ns. 

 
The PSW pressure (figure 4 (a)) decay from ~6.5 -1.8 GPa over the time scales 7 – 30 ns and rises to 
over ~2.4 GPa at 40 ns due to coalescence of PSW and SSW. Similarly, the SSW decays from ~ 3.5 - 
2.3 GPa over 16 – 30 ns. The pressure then decreases from ~ 2.3 - 0.25 GPa over 40 – 1000 ns. The 
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particle velocities (figure 4 (b)) behind the PSW decay from ~ 0.9 - 0.3 km/s over the time scales 7 – 
30 ns and rises to over ~ 0.4 km/s at 40 ns due to coalescence of PSW and SSW. Similarly, the particle 
velocities behind SSW decay from ~0.58 - 0.4 km/s over 16 – 30 ns. Finally, the particle velocities 
decrease from ~ 0.4 - 0.1 km/s over 40 – 1000 ns. 
 
3.4.  P - up Hugoniot 
Figure 5 corresponds to the P - up Hugoniot curve of the Al target obtained for two laser energies 25 
mJ and 175 mJ, respectively. As observed from figure that as the shock pressure increases the particle 
velocities also increases linearly. The maximum particle velocity at 1 GPa observed to be ~ 0.18 km/s 
(at 25 mJ) similarly, at 6.5 GPA observed to be ~ 0.9 km/s. The highest SW velocity (Ush) achieved 
with 25 mJ and 175 mJ found to be ~2.0 km/s and 2.6 km/s. So the maximum particle velocities 
attained at pressures 1 and 6.5 GPa are very small compared to the maximum shock speeds achieved.  

     
Figure 5. P-u Hugoniot curve for the input laser energies of (a) 25 mJ and (b) 175 mJ. 

4.  Conclusion 
Numerical simulations performed with 1D-RHD code show that the laser driven shock waves (LDSW) 
propagating into Al target are dependent on the incident laser energy. At low input laser energy (25 
mJ) the ETR effects on laser driven shock waves (LDSW) propagating into Al target show negligible 
influence on the pressure and particle velocity evolution. So the SW pressure, particle velocity behind 
SW was found to have similar values with ETR and No-ETR effects. While at high input laser energy 
(175 mJ) the radiation found to play a significant role on the SW propagation. The shockwave 
pressure increased with increasing laser energy. One important aspect observed from the simulations is 
that two SW (PSW and SSW) emanating into the target. The first SW was launched during the laser 
pulse interaction and the second SW immediately after termination of the laser pulse. The PSW 
pressure in case of low laser energy is observed to have higher pressure than the SSW pressure 
whereas at high laser energy the SSW is observed to have higher shock pressure. The role of ETR 
effects on PSW is found to be small compared to that of the SSW at 175 mJ which confirms that the 
radiation emitting from ablated plasma is small during the laser pulse interaction process and becomes 
significant after the laser pulse termination due to expansion and cooling of the ablated plasma. The 
ETR effects are found to play a significant role up to 50 ns time scales and later on show negligible 
effects on the SW propagation. The two shock waves were observed to coalesce at around 30 – 40 ns 
and finally propagate as single shock wave. The two SWs observed to be generated in ambient air and 
found to coalesce at around 50 ns where during this time SW was observed to transit from planar to 
cylindrical nature. This was observed to lead to laser ablative shock propagating with varying 
velocities at latter time scales [11]. During the coalescence time the resultant SW is found to have 
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higher pressure than the individual one before coalesce. The P - up Hugoniot of Al target is presented 
from 1- 6.5 GPa SW pressure.  
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