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Abstract. Stretching vortices whose sizes are in the inertial subrange of a homogeneous
isotropic turbulence are picked up, and the geometric relations with the neighboring vortices
whose scales are twice larger are studied. Hierarchical vortices are extracted using a Fourier
band-pass filter, and each extracted vortex is reconstructed as a set of short cylindrical segments
along the vortex axis to discuss the vortex interactions. As a result, it is shown that the
directions of larger vortices near the segments of the fast stretching vortices tend to be orthogonal
to the direction of the stretching segments, and the locations of the larger vortices that contribute
most to the stretching of smaller vortex segments are likely to be found in the direction with
the relative angle of 45° from the axes of the stretching vortex segments. And, the vortices with
the second highest contributions tend to be in the directions 45° from the stretching segments’
axes and orthogonal to the directions of the highest contributing vortices.

1. Introduction

Turbulent flows consist of vortices of various scales interacting with each other. FEnergy is
continuously transported from energy-containing vortices of larger scale to energy-dissipative
vortices of smaller scale. This process is well known as the energy cascade of turbulence.
Kolmogorov|1] theoretically derived that the energy flux in the inertial subrange was constant,
and the slope of the energy spectrum was universally —5/3. This —5/3 energy spectrum has
been confirmed by many experiments[2] and direct numerical simulations (DNS)[3]; however,
the physical mechanism behind the theory is less understood.

Statistical properties of turbulent flows such as the energy cascade are believed to be due to
the mutual interactions of hierarchical vortices, which occur locally and intermittently. In other
words, local vortex behaviors, e.g. vortex formation, stretching and breaking down, should be
responsible for the turbulent motions. For example, in free shear flows, primary vortices are
firstly generated by the Kelvin-Helmholtz instability, and then, the secondary vortices, named
rib vortices, develop between them in the streamwise direction. These secondary vortices are
soon stretched owing to the strong shear generated by the primary vortices. As a result, three-
dimensional deformation of the primary vortices takes place, and vortical structures become
complicated[4]. Similar phenomena can be found in turbulent flows, in a fractal manner.
Goto[5, 6] reported that the energy cascade in the inertial subrange is caused by the creation of
smaller-scale vortex tubes in straining regions which can be found around the larger-scale vortex
tubes. There is little doubt that vortex stretching is an important factor in the energy cascade
process of turbulent flows.
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In our previous studies[7], it has already been found that the vortices of a certain scale in the
inertial subrange were likely to be stretched by vortices whose scales were twice larger. Leung
et al.[8] also reported that vortices of a certain scale were predominantly stretched by the strain
field of larger vortices whose scale was larger or comparable. The present study focuses on the
stretching mechanism of vortices in a homogeneous isotropic turbulence. The relative positional
relationships between a stretching vortex and twice larger vortices around it are investigated in
detail.

2. Numerical method

The target is a homogeneous isotropic turbulence in a periodic box of 27 on a side, which is
obtained by DNS. The three-dimensional vorticity transport equation is solved by a pseudo-
spectral method. Total grid number is 5123. Aliasing errors are completely removed by the
phase shift method. Time integration is performed by a fourth-order classical Runge-Kutta
method. In order to keep the flow field in a statistically equilibrium state, a solenoidal external
force is randomly given to the low wavenumber region 1 < k < 2, where k denotes a wavenumber.
Figure 1 shows the energy spectrum of the flow field. The Taylor micro-scale Reynolds number
Re) of the flow field is Rey = 267.

Figure 1. Energy spectrum of turbulent field: ——, present DNS data; - - - -, slope x k=5/3.

3. Analysis procedures
3.1. Eaxtraction and identification of multi-scale vortices
Vorticity fields of two different scales are extracted by Fourier band-pass filters with the center
wavenumbers k. = 12v/2 and 6v/2, where the bandwidths are ke/ V2 < k < /2k,. Vortical
structures in the extracted vorticity fields are identified using the @ criterion. Regions where the
Q value exceeds 75% of r.m.s. of the enstrophy density Q. are regarded as inside the vortices.
Figure 2 shows the vortical structures before and after the filtering. Many tiny vortices are
observed in the target turbulent field.

In order to discuss the geometric relation of these extracted vortices, each vortex is
reconstructed as a set of cylindrical elements (vortex segments) by the following procedure:

(i) Compute the eigenvalues and the eigenvectors of the Hessian of @) at each computational
grid point and determine the vortex axis as a line which connects the local maximum values

of Q.

(ii) Place vortex segments which are grid width long along the vortex axes.
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Figure 2. Turbulent vortical structures: (a) original vorticity field; (b) extracted at target
scale k1 = 12\/5; (c) extracted at the scale twice larger kg = 61/2. Isosurface of Q = 0.75Qms
is shown.

(iii) By applying the wavelet transformation to the vorticity distribution in the plane normal to
each axis, estimate the radius of each segment as the most correlated scale of the wavelet
coefficient.

(iv) Regard short vortices whose aspect ratios are less than one as noise and eliminate them.

(v) Determine the circulation of each segment so that each reconstructed vortex has the same
circulation as that of the vortex region identified by the @ criterion.

By the procedure shown above, the vortical structures of scale ky = 12¢/2 and ko = 6v/2 are
reconstructed as a set of connected vortex segments. Thus, the velocity at any positions, induced
by any vortex, can be estimated by applying the Biot-Savart law.

8.2. Geometric relations between fast-stretching vortex segments and their surrounding vortices
The stretching of a vortex segment of scale k1 caused by larger vortices of scale ks is evaluated
by the stretching speed -, which is,

_ Ldls _ dus
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(1)

where, l5 is the length of the vortex segment, and us is the velocity in the vortex axis eg direction.

Fast stretching vortex segments whose stretching speeds are within top 10% of the whole
vortex segments of scale k; are picked up, and the geometric relations between these fast
stretching segments and their surrounding larger vortices of scale ko are investigated using the
following procedure:

(i) Choose a fast stretching vortex segment of scale k; as the target segment.

(ii) Find vortices of scale ks in the vicinity of the target segment within 6R, where R denotes
the radius of the vortex segment of scale k.

(iii) Calculate the amount each vortex of scale ko stretches the target segment.

(iv) Find the vortex of scale ko with the highest contribution to stretching, referred as “No.1”,
and the vortex of the second highest contribution to stretching, referred as “No.2”.

(v) Calculate stretching speeds 4/ of the target segment caused by each vortex segment of the
No.1 and No.2 vortices.
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(vi) Average the radius Rg, the position xs and the direction eg of the segments of the No.1
vortex, and then the No.2 vortex, using equations below.

=1 =1

2= > wsi [ DA (3)
=1 =1

es=> view/ > (4)
=1 =1

where, ¢ denotes the vortex segment number, and n is the total number of segments for
each vortex.

(vil) Measure the averaged values of the relative position and the relative angle between the
target segment and the No.l1 vortex, and then the No.2 vortex.

(viii) Repeat the above procedure for all the fast stretching segments of scale k.

4. Results and discussion
Figure 3 shows the probability density function (PDF) of the cosine of an angle between the
segment of the fast stretching vortex of scale k; = 12v/2 and the top two vortices of scale
ko = 64/2 that contribute to the stretching. The value of the PDF becomes higher where the
cosine value is zero. This result means that the two contribution vortices of the larger scale
tend to be orthogonal to a fast stretching vortex segment of the smaller scale. Figure 4 shows
the joint probability density function of the relative positions of the No.l vortices of scale ks.
The centers of the target vortex segments of scale ki are placed at the origin. The axes £ and
n correspond to the direction of the target vortex segments and its orthogonal direction. These
axes are normalized by the averaged radius R of the No.1 vortices. The joint PDF becomes
higher at the region where the relative angle is +45° and where the distance is between R and
2R. Figure 5 shows the joint PDF of the positions of the No.2 vortices. Again, the origin is the
center of the target vortex segment. The axis = is the direction of the No.1 vortices, and the
axis H is orthogonal to Z. The No.2 vortices tend to appear 1.5R — 2.5R away from the target
segments and in the direction orthogonal to the direction of the No.l vortices.

These results indicate that the vortex stretching is likely to be caused under the specific
configuration of surrounding vortices, not just randomly distributed vortices.

5. Conclusions

Geometric relations between two different scale vortices were investigated by focusing on the
vortex stretching. It was found that the segments of fast stretching vortices tended to be
orthogonal to the directions of vortices whose scales were twice larger. Besides, the vortices of
the highest contributions to the stretching were likely to be found in the directions with the
relative angle of 45° to the axes of the stretching vortex segments, and the vortices of the second
highest contributions tended to appear also in directions 45° from the stretching segments and
orthogonal to the directions of the vortices of the highest contributions.
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Figure 3. PDF of the cosine of an angle between the segment of the fast stretching vortex of
scale k1 = 124/2 and the vortices with the highest contributions to the stretching (No.1) and
the second highest contributions (No.2).
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Figure 4. Joint PDF of positions of vortices with the highest contributions to the stretching
(No.1) relative to the fast stretching vortex segments of scale ki, where { denotes the axes of
segments of scale k.
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Figure 5. Joint PDF of the positions of vortices with the second highest contributions to
the stretching (No.2) relative to the fast stretching segments of scale k1, where = denotes the
direction of the No.1 vortices of scale ks.
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