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Abstract. The classical CIR scheme is modified by introducing a  parameter which allows an 
explicit control of dissipation. Also, this permits a seamless integration of the upwind and central 
difference based schemes. It is demonstrated that the  parameter can be linked to solution 
reconstruction and thus second order accuracy can be achieved effectively with a first order formula. 
An objective way of determining  based on solution gradients on the volume interface is established. 
These gradients in turn are also used for viscous flux computation and therefore come at no additional 
cost. The efficacy of the proposed methodology is established by solving a number of standard test 
problems, both in 1D and 2D. 

 
1. Introduction 
One of the important developments in the area of upwind schemes is the development of Modified CIR 
(MCIR) schemes [1]. It simply involves introducing an additional  parameter in the classical CIR scheme, 
which allows an explicit control of the resulting dissipation. This methodology has been successfully used 
in conjunction with the framework provided by the kinetic theory of gases for solving many problems of 
relevance to aerospace industry [2, 3]. The present effort is to further extend the scope of this methodology, 
by introducing a family of  schemes, which provides a seamless framework for integrating upwind and 
central difference type schemes.  It is demonstrated that the  parameter can be linked to the solution 
gradients resulting from a reconstruction procedure and therefore the use of appropriate  can be considered 
as an implicit way to do solution reconstruction. In this work, care is taken to ensure the effort needed for 
gradient finding for determination of  is no more than what is needed for viscous flux computation. The 
resulting procedure, which can be used in conjunction with either flux vector splitting or flux difference 
splitting schemes, is simple, efficient and obviates the need to store solution gradients, leaving significantly 
less memory foot print as compared to classical linear reconstruction procedure.  
 
2. Methodology 
Consider the linear convection equation, 

                               (1) 
where, the property u gets convected with a speed c. The MCIR implementation reads (Figure 1), 
     

                (2) 
where,  is a user defined parameter. Referring to the Figure 2, representing the convection of a linear profile 
over a time step t, the time averaged flux on the volume interface  is given by, 
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                           (3) 

where, the Courant number   and  is an undivided difference representing the solution 
gradient in volume j and  . For an MCIR scheme, it is easy to show that, 

         
 (4) 

 
 
 
 
 
 
 

 
          
       Figure 1. One dimensional stencil    Figure 2. Reconstruction procedure 
 

It is noteworthy to observe that for  = , the MCIR gradient reduces to the gradient corresponding 
to the Lax Wendroff scheme, i.e., . This observation is very interesting in 
the sense that a family of  schemes represented by CIR scheme for  = 1.0 on one end and a spatially 
centered scheme for  = 0.0 on the other end, with varying gradient representation within the finite volume, 
can be presented in the framework provided by MCIR. It is important to note that this gradient representation 
is rather implicit as against the classical formulations, where the gradients are computed explicitly in the 
reconstruction step and therefore the resulting procedure is referred to as Implicit Gradient Reconstruction 
(IGR) method. At this stage, it is worth remarking that negative values of  would result in an unstable semi-
discrete equation and  > 1.0 will accentuate loss in monotonicity. Therefore  is bounded between 0.0 and 
1.0. The inference presented above also provides a means to objectively fix the value of . This is achieved 
by equating the interfacial flux as obtained using a classical reconstruction scheme and the MCIR scheme: 

           (5) 

This results in the following expression for  associated with the interface : 

                            (6) 

It is interesting to note that IGR method chooses the gradient from the upwind cell in the 
computation of . The above expression also suggests that if the gradients used in the computation of  are 
monotonicity preserving then the resulting MCIR scheme will also be monotonicity preserving. However, 
at this stage it appears as though the projected advantage of IGR method in not requiring an explicit gradient 
computation is not satisfied as gradients are required even for the determination of .  The above paradox 
is resolved by imposing an additional constraint that gradient finding associated with the IGR procedure 
should be limited to that needed for viscous flux computation. This is better explained in the case of 2D, 
presented in Figure 3, which depicts the determination of  on the Kth interface between cells j and k. The 
expression for K in 2D reduces to 
 

          with   
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where,  and  are gradients computed on the left and right lobes of the covolume constructed 
around the Kth interface using Green-Gross procedure.  is the unit vector normal to the Kth interface. 
        
 

                    
    

 Figure 3. IGR procedure in 2D 
 
 
 
 
 
 
 

It is evident from the above formula; computed gradients for determination of  are essentially as 
needed for viscous flux computations. Also, all operations associated with the computation of  are limited 
to the data associated with the corresponding face, which allows us to integrate the determination of  with 
the face based procedure needed for the computation of both inviscid and viscous fluxes. Extension of the 
above procedure to Euler equations is rather straight forward, with its application to individual 
characteristic variables and the associated wave speeds. This would amount to recovering the gradients 
associated with the characteristic variables W from the gradients of the primitive variables using the 
following expressions for 1D and 2D, respectively: 

,              and  

where, , u, v and p are density, velocity component in x-direction, velocity component in y-direction and 
pressure, respectively. Once the  values associated with the individual characteristic variables are known, 
any flux formula like the one by Steger and Warming [4] or by Roe [5], can be easily modified to include 
the  parameter associated with IGR. The IGR Roe flux formula (a modified Roe flux formula), in 2D is 
presented below: 

                              (7) 
where,   denotes the Euler flux normal to the interface.  and  denotes strength and 
eigenvalue of ith wave, respectively, computed from Roe averaged matrix.  is Eigenvector corresponding 
to ith wave.  

For IGR Steger and Warming (IGR_SW) flux formula, positive and negative part of the eigenvalues 
are computed as , and first order Steger and Warming flux formula is used with these 
eigenvalues. The eigenvalues are defined as then 
IGR_SW flux formula is given by 
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   where   

 
3. Results  
3.1 1D test case  
The Standard test case of shock tube problem is selected to test the IGR methodology [6]. The diaphragm is 
located at x0=0.5 with initial left and right conditions given in table 1. A total of 100 points are used for flow 
simulation. The Exact solution at time t=0.2 is compared with Roe 2nd order, Steger and Warming (SW) 2nd 
order, SW 1st order and IGR scheme which modified 1st order SW flux formulation. The density, velocity, 
pressure and internal energy comparisons are given in Figures 4(a), 4(b), 5(a) and 5(b), respectively.  It is 
evident that IGR scheme improves 1st order SW solution significantly and are comparable to the 2nd order 
Roe and SW schemes.  
   

 
 
 
 
 
 
 
 
 
 
 

(a)                                                 (b) 
Figure 4. Shock Tube problem (a) Density plot (b) Velocity plot 

 
 
 

 
 
 
 
 
 

 
 
 

                                   (a)                     (b) 
 
          Figure 5. Shock Tube problem (a) Pressure plot (b) Internal energy plot 
 
3.2 2D Test cases  
The IGR methodology have been implemented in HiFUN 2D solver using Roe and SW flux formulation 
and called as IGR_Roe and IGR_SW, respectively. HiFUN 2D is a finite volume based solver which has 
been extensively validated for variety of test cases (http://www.cfdcenter.aero.iisc.ernet.in). To demonstrate 
the capability of IGR methodology, we have selected 3 test cases for flow over NACA 0012 airfoil. The 

Parameter Left State Right state 
 1.0 0.125 

u 0.0 0.0 
p 1.0 0.1 

Table 1. Shock tube initial condition 
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computations from IGR_Roe and IGR_SW are compared with conventional 2nd order Roe and SW schemes 
which use conventional gradient reconstruction to achieve 2nd order of spatial accuracy. An unstructured 
grid with 6950 triangular cells is used for all these computations. 
 
3.2.1 Case 1: The first 2-D test case selected is inviscid flow computation over NACA 0012 airfoil at 
M=0.63 and α=2 . This is a standard test case which has been used in GAMM workshop [7]. The pressure 
coefficient (Cp) comparison is depicted in Figure 6(a). It is observed that IGR_Roe computation is matching 
very well with those from 2nd order Roe and SW. The Euler computations from IGR_SW is close to the 2nd 
order Roe and SW at all the locations except at the suction peak where it’s slightly under-predicting it. The 
density residue (log10) plot is given in Figure 6(b). It is evident that IGR_Roe and Roe 2nd order residue 
pattern are very close to each other. The Cp contour plots are matching quite well with each other [Figures 
7(a)-7(d)]. The comparison between lift coefficient (CL) and drag coefficient (CD) are given in table 2. 
 

         Table 2. 2D test case1 (M=0.63, α=2 ) 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 (a) (b)  
Figure 6. Comparison between various schemes for Euler solution at M=0.63, α=2  (a) Cp plot  (b) 

Density residue 
 

             (a)                         (b)                         (c)                       (d) 
Figure 7. Comparison of Cp contour for various schemes for Euler Solution at M=0.63, α=2   (a) Roe 

2nd order  (b) IGR_Roe (c) SW 2nd order (d) IGR_SW 
 

Parameter Roe 2nd order IGR_Roe SW 2nd order IGR_SW GAMM (1986) 
CL 0.3071 0.3054 0.3048 0.2921 0.3335 
CD 0.11E-05 0.29E-02 -0.95E-03 0.91E-02 0.0 
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3.2.2 Case 2: The second test case is standard AGARD test case [8] at transonic speed with M=0.85 and 
α=1 . In this test case, shocks wave appears on both upper and lower surfaces. Figure 8(a) shows the Cp 
comparison between various schemes. IGR_Roe computations compares quite well with 2nd order Roe and 
SW results. Figure 8(b) shows convergence plot of density residue.  The Cp contour plots are given in 
figures 9(a)-9(d) for various schemes. Shock wave formation on lower and upper surfaces can be seen clearly 
in these figures. Table 3 summarizes the CL and CD comparison for this test case.  
                                                             

Table 3. 2D test case2 (M=0.85, α=1 ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a)  (b) 

Figure 8. Comparison between various scheme for Euler solution at M=0.85, α=1  (a) Cp plot (b)  
Density residue 

 
 

 
 
  
 

 
 
 
 
 
 
            (a)                        (b)                           (c)                        (d) 

Figure 9. Comparison of Cp contour for various schemes for Euler Solution at M=0.85, α=1   (a) Roe 
2nd order (b) IGR_Roe (c) SW 2nd order (d) IGR_SW 

 
3.2.3 Case 3: The laminar flow over NACA 0012 airfoil at M=0.5, α=3  and Reynolds number (Re) of 5000 
is taken as 3rd test case. The Cp and skin friction coefficient obtained from IGR_Roe and Roe 2nd order 
computations are shown in Figures 10(a) and 10(b), respectively. These computations are compared with 
reference data available in reference [9]. The IGR_Roe and 2nd order Roe schemes are slightly under-
predicting the suction peak. This is due to coarse unstructured triangular grid that we have used. However, 
there is good agreement between computations and reference data for skin friction coefficient. More details 
about pressure drag (CDp), skin friction drag (CDf), lift coefficient (CL) and separation location is given in 

Parameter Roe 2nd order IGR_Roe SW 2nd order IGR_SW AGARD (1985) 
CL 0.325 0.342 0.327 0.293 0.330-0.389 
CD 0.0533 0.0564 0.0524 0.0573 0.0464-0.0590 
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table 4. 
Table 4. 2D test case3 (M=0.50, α=3 , Re=5000) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a)  (b) 
Figure 10. Comparison between various schemes for laminar flow at M=0.50, α=3 , Re=5000 (a) Cp plot 

(b) Skin friction coefficient 
 
4. Conclusions 
The work establishes an Implicit Gradient Reconstruction procedure modifying the classical CIR scheme 
using the  parameter. The accuracy of the procedure is established by solving standard test problems in 1D 
and 2D.  As the proposed procedure offers second order accuracy without the need to store solution 
gradients, the memory foot print is considerably small. This feature is expected to result in significantly 
enhanced cache utilization for large scale 3D problems on supercomputing platforms with several thousand 
processor cores, enabling super-optimal utilization of such platforms. In addition, the work also opens out a 
framework for moderating dissipation associated with individual waves for some of the well established 
flux formula. The present effort is going on in further fine tuning the  parameter to make the IGR scheme 
operational for a larger class of problems.  
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