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Abstract. In this paper, a hybrid scheme based on fifth-order finite difference WENO scheme is 

proposed for solving spurious oscillation in strong shock-capturing. In this scheme, we consider 

smoothness indicator as a measurement of gradient and construct a function of indicator, using 

which the new hybrid can switch between WENO scheme and Lax-Friedrichs (LxF) scheme. 

Numerical experiments demonstrate that the hybrid scheme dominates the accuracy of the 

solution in smooth region and non-oscillation can be promised around discontinuity. The new 

hybrid scheme could essentially preserve positive density and positive pressure. The idea of 

constructing the hybrid can be easily extended to other high resolution schemes (TVD, ROE etc.) 

coupled with WENO scheme. These ideas will be illustrated in further study. 

1. Introduction 

Exact solution of scalar conservation law 

 
 

   0

0

0 =

tu F u

u u
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 (1.1) 

has an important property that it satisfies a strict maximum principle, namely: 

     0 0, min ,maxx xu t u u  x x x [1], the same property is desired to be satisfied in numerical 

simulation. 

Weighted essentially non-oscillatory (WENO) schemes, which are based on essentially non-

oscillatory (ENO) schemes, perform well in high accuracy solution but still have some problems in 

shock-capturing. [ 2, 3, 4, 5] develop advanced smoothness indicators of WENO scheme since Jiang 

and Shu proposed classical WENO-JS [6], among which WENO-M and WENO-Z can measure 

smoothness indicator in the vicinity of critical points, and assign substantially larger weights to 

discontinuous stencils [3], which improves the robustness of smoothness indicator. Due to the Gibbs’ 

phenomenon, high order Lagrangian interpolation always occur oscillation. Numerical experiment 

demonstrate that classical WENO-JS shows mild oscillation while Flux Vector Splitting (FVS) WENO-
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Z is sensitive to discontinuity and performs severe oscillation which might lead to negative density and 

pressure during calculation in some complex problem. 

The spurious oscillation of fifth-order WENO scheme comes from following reasons: (a) Odd rank 

truncation error term (
(2 1) (2 1)/ , ( 1,2,......)n nu x n    ) in WENO scheme, because the dispersion 

always comes from  
th

2n 1 -derivative and the dissipation from  
th

2n -derivative ( 1,2,......)n  , 

detail analysis of the problem in [7]; (b) The solution of unbalanced weights in advanced WENO 

schemes ( WENO M,WENO Z,WENO NS,WENO     ) may do not strictly satisfy 

maximum-principle in scalar conservation law, which lead to severe oscillation when using 

characteristic splitting.  

In this paper, we further deal with the spurious oscillation in the vicinity of discontinuity. There are 

mainly three techniques for solving the problem: (a) Add higher order term to WENO scheme. Then 

counteract the fifth-derivative (
(5) (5)/u x  ) of the truncation error, then the main term of truncation 

error is a sixth-derivative which mainly perform dissipation; (b) Direct limitation: solution  ,u tx  that 

does not satisfy maximum-principle will be forced into    0 0min ,maxx xu u  x x , this technique 

perform well in some mildly oscillatory solution; (c) As will be discussed in following part, a hybrid of 

WENO and low accuracy scheme that satisfies maximum principle. 

It is well-known that Lax-Friedrichs (LxF) schemes solving equation (1.1) strictly satisfies the 

maximum principle [1]. Both explicit and implicit 1st-order LxF scheme keep positive density and 

internal energy [8]. And some Positive-Preserving WENO scheme is a combination of WENO and LxF 

and a good behaviour of such schemes are demonstrated [9]. Thus we use LxF scheme to construct a 

Hybrid based on discontinuity recognition. 

In following sections, we review the WENO-Z scheme and LxF scheme, then we propose the hybrid 

scheme. Finally, numerical experiments can demonstrate the robustness of the scheme. 

2. Review of WENO and LxF 

In this section, we will describe the construction of the two schemes applied on one dimension Euler 

system: 

 
0

t x

 
 

 

U F

 (2.1) 

Where 

 

2,

( )u E

u

u u p

pE

 

 

 
 

  
 

 
 

 




 

 

U F

 (2.2) 

 Spatial-discrete: on the cell [ / 2, / 2]j j jI x x x x   , we have: 

 

1/2 1/2
0

j j

t x
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H HU

 (2.3) 

Numerical flux 
1/2jF  is used for approximating flux

1/2jH . 

2.1. FVS WENO-Z scheme 

On stencils
2 1 1 2{ , , , , }j j j j jS I I I I I    ,

1/2jF  of WENO-Z scheme can be obtained by: 

 

+

1/2 1/2 1/2+j j j



  F F F
 (2.4) 

Hereinafter, only the positive part 
+

1/2jF   is described for brevity, the formulas for the negative part of 

the split flux are symmetric. 
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In the right hand term of (2.5), k



F can be obtained on sub stencil
2 1{ , , }k j k j k j kS I I I     , namely: 
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where 1/2 1/2 1/2, ,j j jL R

   is eigenvalues, left eigenvectors and right eigenvectors of Jacobi matric 

 1/2 1/2
/j j

A F x 
   respectively, which can be obtained by Roe-average. 

 0 1 2

.k k
k k

k

C

IS


 

  
 

 
，

 (2.7) 

Where 
kC is a constant named ideal weight and denominator

kIS : 

 5
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 (2.8) 

Where 
JS

kIS  is smoothness indicator of classical WENO-JS [6], the role of ò is avoid denominator 

being zero. 

And 
5  in fifth-order WENO-Z scheme: 

 5 2 0| |JS JSIS IS  
 (2.9) 

2.2. LxF scheme 

1/2jF  of LxF scheme can be directly obtained by: 

 
 1/2 1 max 1

1
(| | ) ( )

2

LF

j j j j j ju c      F F F U U
 (2.10) 

3. Construction of hybrid scheme 

The basic idea of the hybrid is distinguishing discontinuity from flow region and constructing a function 

  to construct modified numerical flux: 

  1/2 1/2 1/2 1/2

m LF

j j j j    F F - F F  (3.1) 

Where   can vary from 0-1, and   can be a function of measurement of discontinuity. 

3.1. A choice for recognizing discontinuity 

In this section, we devise a measurement for recognizing discontinuity, which is the variable for function

 . 

Generally, smoothness indicators (IS) play an important role in constructing weights of WENO 

scheme on sub stencils. IS measure the smoothness of the numerical solution on a stencil to form a 

weight. We define the standard deviation of IS: 

  
2 2
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When the stencil 
2 1 1 2{ , , , , }j j j j jS I I I I I    is a flat region, namely 

 
2 1 1 2j j j j j      U U U U U  (3.4) 

We can easily find 0SDIS  , and when the standard deviation of IS become great, we consider 

these points as a discontinuity. Though these stencils with huge gradient may not discontinuity, we both 

know that WENO scheme will degenerate to low order in complex region, so a low accuracy LxF 

scheme used to replace in these regions is sustainable. 

 

3.2. Modified term limiter  

Based on discussion above all, we find that SDIS can be an effective indicator of huge gradient. In 

order to limit the scheme to low order accuracy, we add a term  1/2 1/2

LF

j j  F - F  to flux, in which   is 

a function of huge gradient measurement, so SDIS  can be the variable for function   , namely

 SDIS  .  satisfies the following requirements: 

  Varying from 0 to 1.  

   must be positive correlation with SDIS . 

 Once SDIS ensure a smoothness region, 1/2

LF

jF  cannot influence flux 1/2

m

jF  in case of losing 

excessive accuracy. 

There are two possible choices of  SDIS as displayed in figure 1: 

 
1

1
1

1
f

x
 


 (3.5) 

 
2 1 xf e   (3.6) 

 
Figure 1. Functions: 1f x and 2f x  

 

2f  shows some better properties comparing to 1f : when huge gradient is recognized, a bigger 

weight is assigned to modify term  1/2 1/2

LF

j j  F - F , which could keep the scheme more robust and  a 

steep gradient of 2f can easily distinguish smooth region. Above all, we use  

 1 SDISe    (3.7) 

 In practical application, we use a modified function for a better robust: 

 
5

1 , :

, :

SDIS Ac

m e when SDIS threshold

x when SDIS threshold


   
 
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 (3.8) 
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where Ac is an amplified coefficient for adjust SDIS’s effects to 
m , and when SDIS is smaller than 

threshold, we consider the stencils are relative smooth, and modified term show little effects on flux. 

Because 1/2 /2

5

1 ( )WENO

j j O x   F H , we assign  the same order as
5x . 

4. Numerical test 

We solve Euler system (2.1) as test: 

Test 1: Lax problem with initial condition: 

 
 

 

  0.445,0.698,3.548 , 1 0
ρ,u,p

0.500,0.000,0.571 ,0 1

x

x

  
 

 
 

The numerical solution of density of LxF, FVS WENO and Hybrid schemes are shown in figure 2, 

figure 3 and figure 4 respectively. 

 

  
Figure 2. Lax problem: Lax-Freidrichs scheme, 

One-order Runge-Kutta; CFL=0.1; 200points; 

T=0.2;  

Figure 3. Lax problem: FVS-WENO scheme, 

One-order Runge-Kutta; CFL=0.1; 200points; 

T=0.2;  

 

 
    Figure 4.  Lax problem: Hybrid-WENO scheme,  

    One-order Runge-Kutta; CFL=0.1; 200points;  

    T=0.2; 

As shown in figure 2, figure 3 and figure 4, we can find that LxF scheme does not bring in oscillation 

but a large dissipation about discontinuity, WENO scheme show a high resolution of the discontinuity 

but a huge dispersion which would lead negative density that may cause blow up. Hybrid show a middle 

performance, an acceptable resolution, which is better than LxF scheme, and restrain the oscillation. 

Test 2: Sod problem with initial condition: 
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The numerical solution of density of LxF, FVS WENO and Hybrid schemes are shown in figure 5, 

figure 6 and figure 7 respectively. Hybrid show the same property of resolution and oscillation restrained 

as Lax problem but a mild oscillation which means the hybrid scheme still need some correction. 

 

  
Figure 5.  Sod problem: Lax-Freidrichs scheme, 

One-order Runge-Kutta; CFL=0.1; 200points; 

T=0.2;  

Figure 6. Sod problem: FVS-WENO scheme, 

One-order Runge-Kutta; CFL=0.1; 200points; 

T=0.2; 

 

 
    Figure 7.  Sod problem: Hybrid-WENO scheme,  

    One-order Runge-Kutta; CFL=0.1; 200points;  

    T=0.2; 

5. Conclusion 

The property of FVS WENO scheme we have analysed in this paper show high dispersion because of 

its odd-order truncation error. We construct a hybrid scheme with the help of Lax-Friedrichs to 

overcome it. A limiter based on smoothness indicator is constructed for connecting WENO scheme with 

Lax-Friedrichs. Numerical simulations demonstrate that the hybrid show a high resolution and the 

ability to restrain oscillation. Further study will focus on a higher resolution of the hybrid of WENO and 

TVD and extend the hybrid scheme to multi-dimensions, more cases will be tested. 
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