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Abstract. We investigate the influence of non perfect impedance boundary on the bistable
zone in thermoacoustic interactions of a horizontal Rijke tube. A wave based approach is
used to obtain the nonlinear dispersion relation with frequency dependent impedance boundary
condition. The location and the time delay in the response of the heater are considered as
bifurcation parameters to obtain the stability boundaries. In the presence of non perfect
impedance boundary condition, we find that the extent of globally unstable regime reduces and
the bistable zone significantly increases. The quantitative changes in the stability boundaries
and the bistable zone are investigated for different time lags. However, the nature of bifurcation
remains sub critical and unaltered for the range of time delays considered in the present study.

1. Introduction

Thermoacoustic instability is one of the major issue which has been faced by scientist, engineers
and industrialist over the last five decades. Starting from rocket engines to gas turbines, boilers,
afterburners and incinerators, thermoacoustic instability has influenced their operational limits.
Controlling this instability during design phase is still a challenging task. Detailed review on
the dynamics and control of this phenomenon can be found in [1, 2]. Rijke found that when
heated gauze is placed at quarter length of a vertical tube in the bottom half, produced sound
and this was later known as thermoacoustic instability [3].

Most of the study in thermoacoustic interactions concerned about different types of heat
sources and their influence on the stability. The amplitude of the limit cycle oscillations is
determined by the balance between the acoustic driving caused due to the unsteady heat release
rate and damping in the system. Energy losses due to acoustic radiation and dissipation at the
walls are the major sources of damping. Only few included radiation losses directly into analysis
[4, 5, 6] and a few others added the effects of damping implicitly in energy equation [7, 8].
However, no detailed investigation on the effects of radiation losses on the stability regimes is
performed yet. Thermoacoustic system possess three different stability regimes namely globally
stable, globally unstable and bistable regions [5, 10, 11, 8]. In the globally stable zone, all the
disturbances decay exponentially irrespective of the amplitude of oscillation and eventually, the
system reaches its steady state. In the globally unstable zone, disturbances grow even if it is
infinitesimally small; there is no linearly stable state and finite amplitude oscillation (limit cycle)
prevails. In the bistable zone, the system dynamics relies completely on the initial perturbation
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Figure 1. Schematic of Rijke tube.

given to the system [12]. This is manifested as an hysteresis in the experiments. Furthermore,
classical linear stability analysis is not valid in this zone, making the prediction on the dynamics
difficult. Since the bistable zone possesses crucial dynamics such as triggering and lies in between
the linearly stable and linearly unstable zones, it is interesting to explore it in detail.

The presence of noise on the dynamics of the bistable zone was investigated exhaustively
in the recent past. Experimental investigation in a simulated gas turbine combustor reported
that inherent noise in the combustor can make nominally stable combustor into unstable [13].
Waugh et al. [15] found that high amplitude low frequency (pink) noise has strong influence
on triggering. Experimental investigation of noise induced transition in a diffusion flame was
performed by inducing random disturbances in fuel flow. A reduction in the amplitude of limit
cycle oscillation was observed [16]. In reference [14], it was found that the system exhibits
completely different type of bifurcation above certain threshold noise level. All the above
investigations indicate that the nature of bifurcation or in turn the extent of the various stability
regimes were altered significantly in the presence of noise.

We believe that the extent of bistable zone is not only affected by the noise, but also by
the presence of acoustic losses in the system. Therefore our main objective in this study is to
investigate the effects of radiation losses on the bistable zone, which are not given due attention
in the past. Radiation losses in flanged and unflanged tubes, their dependence on frequency
and amplitude were investigated in references [17, 18]. In this paper, describing function (DF')
technique is used to predict the nonlinear stability of thermoacoustic oscillations. This technique
is preferred, as it is easily possible to incorporate non perfect impedance boundary conditions. In
the past, this framework was used to predict limit cycle, triggering and frequency of oscillations
[10, 11, 4].

This paper is arranged in the following manner. Section 2 deals with the theoretical modeling
of Rijke tube and obtaining the dispersion relation, followed by section 3 interpreting the results.
In the end, section 4 provides a summary of the present work.

2. Modeling system dynamics using wave approach

One of the most simple and elegant model to capture the salient dynamics associated with
thermoacoustic interactions is a Rijke tube and it is best suited for our study. Linearized
acoustic momentum and energy equations govern the flow properties in a Rijke tube. Figure 1
shows the schematic of a Rijke tube with a heat source located at xy. The heat source is assumed
to be compact compared to the length of the tube I. The steady flow is from left to right and
the associated Mach number is small. The mathematical model for heat source is obtained
from Heckl [6]. As shown in figure 1, region 1 and 2 has constant flow properties. Linearized
momentum and energy equations are combined to obtain the wave equation as described in
reference[5],
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where p/, Q', S., v, ¢ and & denotes acoustic pressure in the duct, fluctuating heat release rate
from the heat source, cross sectional area, ratio of specific heat capacities, acoustic damping
and Dirac delta function respectively. The above equation (1) is solved using wave based
approach [19]. The pressure and velocity fluctuations are represented as p’ = R [p(z)exp(iwt)]
and u' = R [4(x)exp(iwt)], i = v/—1, where w is the complex frequency with w = w, + iw;. w,
and w; represent the oscillating circular frequency and the growth/decay rate of the oscillations
respectively. These expressions are then inserted in the above equation to obtain an Helmholtz
equation. Solving Helmholtz equation results in a solution for p and @ as follows,

pn(x) = An explisy (x—xp)] + By exp[—isy (x — )] 2)
in(0) = =2 {Ay eaplisn (7 — )] — B cap (—isa (e~ 1)} ®)

For locations in the up (0 < z < zy) and downstream (z; < x < [) of the heat source,
the subscripts n is replaced with u and d respectively. ¢, is the local speed of sound and
s2 = (w? —iCw)/c2. Note that the above solutions are valid for all x # x;. At z, the acoustic
jump conditions, pf,(z}) = p’d(a;;f) and uél(x;{, t) —uy(zy,t) = (v — 1)Q'(t)/(vS.P) are applied.
The superscripts /,”, ~, 7 denote fluctuating quantities, complex amplitude, quantities just up
and downstream of the heat source respectively. In the velocity jump condition, Q' (t) is replaced
with describing function. This describing function assumes weak nonlinearity, meaning that only
the response in the excitation frequency is used for the analysis and the higher harmonics are
neglected. Furthermore, A,,, B, are all constants and are eliminated to obtain the following
nonlinear dispersion relation.

£ [Ggcos(sqra) — iHgsin(sqxq)] [Hy cos(suxy) + iGysin(syxy)] — [Gy cos(syxy)

(y-1DQ

vScPuy, d

+ i Hy sin(syx )] [Hgcos(sqrq) — iGgsin(sqzq)] |1+ =0 (4)

Here vy =l — 2y, G, = I, — 1, Hy, = I, + 1 and I, = (sp/kn —1/2,) [ (sn/kn +1/2Zy).
Further § = pucu/paca and F (u,,w) = (Q'/Q)/[w,(27)/u] = G exp(id). Z, P, F, G, ¢
represent acoustic impedance at the boundary associated with n (for instance when n = wu,
Zn = Zy(at © = 0)), steady state pressure, describing function, gain and phase. The expression

for damping is taken from references [7, 18], ( = w, /7 (clwr/wrl + 02\/wr1/wr). c; and ¢
are damping co-efficients which accounts for the losses. w,; denotes fundamental oscillation
frequency of an organ pipe.

In equation (4), F represents the response of the heat source to various input frequencies
and amplitude of velocity fluctuations. In this paper, the heat source is considered to be an

electrical heater. The instantaneous heat transfer (release) rate (@) for a given unsteady velocity
fluctuation is obtained from modified King’s law [6].

) Lo (Tw —T) 4 X q/ﬁ 11 Lt “4‘<x;’t_“”> ;
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where Ly, Ty, Ty, d, X, ¢, and p represent the wire length, wire surface temperature, upstream
temperature, wire diameter, thermal conductivity, specific heat at constant volume and steady

state density of the flow respectively. From equation (5), steady state heat transfer rate (Q) is

found by putting u/, = 0 and the fluctuating heat transfer rate(Q’) is obtained from Q' = Q — Q.
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Figure 2. (a) Linear stability boundary and (b) nonlinear stability boundary in the zy/l — 7
plane. w; shown, is obtained in the limit |u; (2 )| = 0. Further and ---- - lines denotes
the study of Subramanian et al. [8] and present analysis respectively. The non dimensional heat
release rate Qnp = 0.8.

Non dimensionalized fluctuating heat transfer rate is written as Qnp = (y — l)Q/ (vSePuy,).

Tw is the time lag between the input u/, and the response @’. It is non dimensionalized as
T = Ty /.

Table 1. Parameters used in this investigation.
T,=70K 7T,=295K u,=024m/s ~ =14 R=288.35 J/kg K
d=0.45 mm L,=13m =525 mm P=latm ¢; =0.1

[=1m

c2 = 0.06

3. Results and discussion

In this section, results from the above solution procedure are first compared with the previous
analysis [8], where the solution was obtained in the time domain using continuation methods.
Acoustically perfect boundary conditions (open-open in this case) were used for the comparison.
In perfect boundary conditions, the time averaged acoustic intensity is zero and hence there are
no radiation losses. Later, the effects of inclusion of non perfect impedance boundary condition,
which is the main objective of the present paper is discussed.

For a given x¢, acoustically open-open boundary condition (Z,, = 0) and other parameters
shown in table 1, equation 4 is solved to obtain w. From the complex frequency, both stability
boundary and frequency of oscillations are obtained. To facilitate a one to one comparison with
reference [8], ¢ is kept 1 (although not true in reality) and other parameters are chosen as the
same value given in the above reference. The comparison is shown in figure 2 for the linear and
nonlinear stability boundaries, where the non dimensional time lag 7 and heater location x /I
are the parameters. The system is linearly stable, when w; > 0 in the limit ]u&(a;;)] = 0 and
linearly unstable when w; < 0. The demarcation line is the linear stability boundary. On the
other hand, in the bistable zone, w; equals zero for two values of ]u;(ac;)] > 0. At these two
locations, when dw;/d(uq(z;)) < 0, there is an unstable limit cycle. Otherwise, a stable limit
cycle occurs. As z is varied, these two solutions merge to form a fold point (in the parlance
of dynamical systems’ theory). The locus of this fold point in the ¢/l — 7 plane forms the
nonlinear stability boundary. The region between the linear and nonlinear stability boundaries
forms the bistable zone.

We compare the boundaries obtained from this paper (dotted lines), with those from reference
[8] (full lines) and are shown in figure 2. It is expected to have a perfect match between the two
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Figure 3. Stability boundaries for (a) perfect (acoustically open) (b) non perfect boundary
conditions. and - - lines indicate linear and nonlinear stability boundaries respectively.
(c) Relative change in the extent of the bistable zone between figures 3 (a) and (b). O and ®
denote left and right envelopes of stability boundaries respectively. Qnp = 0.95.

results, as the equations, boundary conditions and the parameters are the same. We only observe
that the stability boundaries are analogous qualitatively, they are different quantitatively. This
difference is attributed to the different analysis methods used in both the investigations. In
reference [8], Galerkin approach was used to convert the partial differential equation (1) to a
set of ordinary differential equations and later continuation algorithm was used to obtain the
stability boundaries. In the present investigation, we use wave based approach to predict the
same. Both the methods use different approximations. In the former, since Galerkin spatial
decomposition is used, the acoustic velocity jump across the heat source is excluded, while in
the latter, higher harmonics in the describing function for the heat source are neglected.

Furthermore, for a given location of the heat source (say x /I = 0.25), the system is linearly
and nonlinearly stable for low values of 7. As 7 is increased, it crosses the stability boundaries,
enters initially the bistable region and then linearly unstable zone. Further, as 7 is increased to
large values, the system again becomes globally stable. 7 is related (approximately) inversely to
the mass flow rate in the system. This phenomenon of a initially globally stable system becoming
unstable and then becoming again stable, as the mass flow rate is increased is also observed in
the experiments [9]. Hence, the present solution procedure is able to capture the observed trends
in the experiments and compares qualitatively with the previous numerical investigations.

We can now use this model and the analysis procedure to investigate the effects of non perfect
impedance boundary conditions. Frequency dependent impedance boundary conditions for an
unflanged pipe is used from reference [17] for our investigation.

wrr't) 2 WrTt
= —0.6 6
( 2c ) ! c (6)

A

Zn:g
Ulp

where, 7; is the radius of tube. This expression is included as Z,, in the dispersion relation (4)
and solved for the complex frequency, thereby obtaining the stability boundaries. The obtained
stability boundaries are then compared with those obtained by using perfect (open) boundary
conditions (figure 3(a,b)). First, one could observe a reduction in the globally unstable zone
(boundaries in full lines shown in both the figures). Non perfect impedance boundary conditions
lead to additional losses due to acoustic radiation and hence the size of the unstable zone is
decreased. For the same reason, the size of the globally stable zone, indicated by the nonlinear
stability boundary (shown as dotted lines) is also increased. However, non trivially, region
between the two boundaries (bistable zone) is increased.
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One can observe two branches of the bistable zone in figure 3(a,b). These are indicated
as left and right envelopes. The percentage relative change in the bistable zone due to the
inclusion of the non perfect boundary conditions for both the envelopes are shown in figure
3(c). Hy and H,_, denote the size of the bistable zone corresponding to non perfect impedance
and acoustically open boundary conditions respectively. The increase in the size of bistable
zone is significant and it varies with 7. The non monotonic trend with 7 is because of the
phase relation between heat release rate and pressure oscillation which in turn is related to the
stability boundaries. The changes are more noticeable for the left envelope, where the values of
x s/l is close to the end, where a non perfect boundary condition is applied. However, the nature
of bifurcation remained a sub critical Hopf in both the cases. The results indicate that the
inclusion of non perfect impedance boundary condition leads to significant (on an average 25%)
increase in the bistable zone. Hence, incorporation of correct impedance boundary conditions
is essential to obtain accurate stability maps and thus the operating regimes of practical gas
turbine combustors.

4. Conclusion

Stability analysis of thermoacoustic interactions in an electrically heated horizontal Rijke tube
is performed. The dynamics of the heat source is modeled using modified King’s law. Describing
function analysis is then used to obtain the stability boundaries. A good qualitative comparison
in the results with the previous investigations corresponding to the acoustically open-open
boundary condition is observed. The analysis is extended to include non perfect impedance
boundary conditions and the results are compared with those from acoustically open boundary
conditions. From the obtained linear and nonlinear stability boundaries, we found that the
inclusion of non perfect impedance boundary condition leads to an increase in the extent of
globally stable regime and a decrease in the globally unstable regime. The major finding of this
investigation is the non trivial increase in the extent of the bistable zone while incorporating
non perfect impedance boundary conditions. However, there is no change in the observed nature
of bifurcation. Relative change in the extent of the bistable zone is significant and exhibits a
non monotonic variation with time lag. In conclusion, it is essential to include the correct non
perfect impedance boundary condition to accurately predict the stability maps of thermoacoustic
oscillations.
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