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Abstract. This work presents a numerical framework to efficiently simulate methane combustion at
supercritical pressures. A LES flamelet approach is adapted to account for real-gas thermodynamics effects
which are a prominent feature of flames at near-critical injection conditions. The thermodynamics model
is based on the Peng-Robinson equation of state (PR-EoS) in conjunction with a novel volume-translation
method to correct deficiencies in the transcritical regime. The resulting formulation is more accurate than
standard cubic EoSs without deteriorating their good computational performance. To consistently account
for pressure and strain fluctuations in the flamelet model, an additional enthalpy equation is solved along
with the transport equations for mixture fraction and mixture fraction variance. The method is validated
against available experimental data for a laboratory scale LOx/GCH, flame at conditions that resemble
those in liquid-propellant rocket engines. The LES result is in good agreement with the measured OH*
radiation.

Introduction

Todays main stage liquid-propellant rocket engines (LRE) typically operate at supercritical pressures,
i.e., at chamber pressures that exceed the critical pressure of the propellants, and at cryogenic
injection temperatures. One or both of the propellants are thus injected at near-critical conditions
and mixing, ignition and combustion are affected by non-ideal thermodynamic effects. In particular,
the thermodynamic- and transport properties, e.g., density, enthalpy, viscosity, are highly non-linear
functions of temperature and pressure. Moreover, the experiments of Mayer ef al. [1, 2] showed that
the surface tension between liquid and vapor is diminished at sufficiently high pressures and mixing
is characterized by continuous-phase diffusion rather than by two-phase spray atomization. In these
diffusion mixing layers, the fluid properties change drastically and the density may vary by two orders
of magnitude within a few micrometers.

Such configurations pose a serious challenge for numerical as well as for experimental studies. At
the same time, their investigation is important to better understand the involved processes and to develop
tools that help in the design of LREs, but also of other high pressure combustion devices, such as novel
Diesel motors or gas turbines. The topic received considerable attention in the last decade and several
valuable experiments were carried out. Thorough overviews are given, for instance, by Oschwald et al.
[3] and by Chehroudi [4] focusing on the joint work of the U.S. Air Force Research Laboratory (AFRL)
and the German Aerospace Center (DLR) as well as by Habiballah et al. [5] focusing on the Mascotte
testing facility. Along with the better understanding that has been generated by the experimental efforts,
several groups developed models and numerical tools to perform simulations of near-critical mixing and
combustion allowing for a detailed view on the flow. Among the first to conduct large-eddy simulations
(LES) of supercritical injection was Oefelein and Yang [6] and later Zong et al. [7] as well as Oefelein
[8]. These studies showed that the accurate treatment of thermodynamic non-idealities are key to obtain
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realistic numerical representations. However, accuracy comes at the cost of numerical effort and a
compromise has to be made in order to keep the computational effort manageable. Matheis et al.
[9] identified and compared various volume-translation methods [10, 11] for cubic equations of state
(EoS), such as Peng-Robinson (PR) [12] or Soave-Redlich-Kwong (SRK) [13]. These methods have
the advantage to improve the predictive quality of cubic EoSs for near-critical conditions without a
significant degradation of their good computational performance. In the present work, we employ the
volume-translation method of Abudour et al. [14] which is based on the work of Chou and Prausnitz
[15]. This method has already been used in our previous LES studies of supercritical nitrogen injection
[16] as well as of inert coaxial LN»/GH> injection [17].

In the present work, we focus on simulating the injection and combustion of LOx/GCHy, at the
experimental operating conditions of Singla et al. [18]. An additional subject that needs to be addressed
is the choice of an appropriate combustion model for this configuration. In previous LES studies of
this test case, Guézennec et al. [19] employed a reduced reaction mechanism accounting for finite-rate
chemistry, while Schmitt ez al. [20] made the assumption of infinitely fast chemistry. This assumption
was also made by Cutrone et al. [21] as well as by Kim er al. [22] who simulated the test case of Singla
et al. [18] using a Reynolds-averaged Navier-Stokes (RANS) flamelet model. In the present work, we
employ the steady laminar flamelet model for LES [23, 24] using a presumed S-shape probability density
function (PDF) for the subgrid-scale (SGS) fluctuations. The choice is supported by the comparative
study of Zong et al. [25], who showed that the flamelet approach performed better than alternative
combustion models for a splitter plate configuration at conditions that were similar to those in Singla e?
al’s experiments. Furthermore, Ribert et al. [26] showed that the chemical consumption rates scale as
the square-root of pressure. Thus, the assumption that chemical reactions are considerable faster than
mixing time scales and the reaction zone is thin , which is a precondition for the flamelet approach,
appears to be appropriate for the present high-pressure configuration. This is also supported by Lacaze
and Oefelein [27] who investigated the applicability of the flamelet approach for the LES of supercritical
LOx/H, combustion.

Numerical and physical modeling
LES equations
In LES, only the large-scale turbulent fluctuations are computed while fluctuations on subgrid-scale
(SGS) level have to be modeled. The threshold between unresolved and resolved scale is determined by
a certain filter width which is the local cell size in the present work. Filtering the Navier-Stokes equations
leads to the filtered LES equations for mass, momentum and energy, cf. Garnier et al. [28].

As mentioned before, we employ the flamelet concept [24] to avoid the computational cost of solving
a complex chemistry kinetics mechanism. The species composition in the flow field is represented by
three parameters: the scalar dissipation rate y, the resolved mixture fraction f and its subgrid variance
f72. The scalar dissipation is modeled with an algebraic equation, whereas additional transport equations
are introduced for the mixture fraction and its variance that are solved along with the filtered Navier-
Stokes equations:
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where a bar * denotes the finite-volume filter and a tilde denotes Favre-filtering, i.e., * = px/p. x; are
Cartesian coordinates, ¢ is the time, p is the density, ii; is the velocity component in direction i. u and .
are the molecular and the eddy viscosity, respectively.
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Figure 1. Verification of the real-gas thermodynamics model for O; at p = 5.61 MPa: — PR-VTA EoS,
—— PR EoS, o NIST chemistry webbook [33].

The eddy viscosity y, is calculated using the SGS turbulence model of Vreman [29]. The diffusion
of mixture fraction and of mixture fraction variance is modeled using the standard gradient diffusion
assumption with the diffusion coefficient being connected with the viscosity through the molecular and
turbulent Schmidt number. These are set constant to S¢ = 1.0 and S¢; = 0.7, respectively. The scalar
dissipation rate in Eq. 2 is decomposed into a resolved and a SGS contribution.
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Here, A is the local filter size and the model constant C), is set to 2.

In the present work, we employ a Pressure Implicit with Splitting of Operators (PISO) algorithm
[30, 31] for solution of the Navier-Stokes equations. Instead of solving the continuity equation
directly, the discretized momentum equation is used to derive a pressure evolution equation, which
guarantees mass conservation. This has the advantage that stiff equation systems, especially for low
Mach number flows, are avoided and the computation can be run using larger time steps. However,
several modifications are necessary to consistently incorporate real-gas thermodynamics models into the
standard PISO approach. For details, please see the work of Jarczyk and Pfitzner [32].

Real-gas thermodynamics
The thermodynamic model is based on the mixture PR EoS [12]:

RT a
p= - = , 4

VPR = b vhy + 2vprby — b},

where vpg is the molar volume of the mixture, 7T is the temperature and R is the universal gas constant.
Intermolecular attractive forces are described by the temperature dependent function a,, and the reduction
of free volume due to the finite volume of the molecules is taken into account by b,,,. The mixing rules for
these parameters are taken from the work of Harstad ef al. [10]. The PR EoS is an adequate choice for
temperatures above and close to the critical temperature, however, in the transcritical regime considerable
deviations from experimental data can be observed [11]. In the present work, we therefore employ the
volume-translation method of Abudour et al. [14] (PR-VTA), who proposed a generalized form of the
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Figure 2. CH4/O; flamelet solution for y;; = 0 and p = 5.61 MPa: —full mechanism (GRI 3.0), ——
reduced mechanism of Frassoldati ef al. [37].

method of Chou and Prausnitz [15] that considerably improves the accuracy of the density prediction at
minimal extra computational cost. The basic principle is to shift the thermodynamic state of the fluid
along its volume axis keeping pressure and temperature constant.

The caloric properties, e.g. heat capacities and enthalpy, are calculated using the departure function
formalism. The quantity of interest is decomposed into an ideal gas contribution, which is calculated at
a low reference pressure using NASA polynomials [34], and a pressure-dependent departure function.
More details are given, for instance, by Poling ef al. [35]. The viscosity and the thermal conductivity is
modeled using the empirical correlation for dense fluids of Chung et al. [36].

The left plot in Figure 1 demonstrates the effect of the volume-translation method on the density
prediction for O, at p = 5.61 MPa. While the uncorrected density deviates from the reference data of
the NIST [33] for temperatures below 150 K, the density obtained with PR-VTA is in good agreement
with the reference data over the entire temperature range considered in the present work. In particular,
for the oxidizer injection condition (7o, = 85 K, p = 5.61 MPa) of the test case presented later on, the
deviation from NIST is 10.33% for the uncorrected PR EoS and only 0.005% for the PR-VTA EoS. The
right side of Figure 1 shows the constant pressure heat capacity c¢,. Note that only the PR EoS result is
shown, since the volume translation of Abudour et al. could not be considered in the evaluation of the
caloric properties for the reasons mentioned above, cf. Matheis et al. [9] for details.

Flamelet model for real fluids

A flamelet model for turbulent non-premixed combustion [23, 24] is employed to cut the cost of solving
the chemistry kinetics along with the transport equations. The concept is based on the view of the
turbulent flame as an ensemble of thin laminar diffusion flames, generally referred to as flamelets. The
underlying assumption is that the characteristic chemical time scales are small compared to the turbulent
time scales (high Damkohler number). Another condition for the validity of the flamelet approach is that
turbulent vortices do not perturb the inner structure of the flame, i.e. the flame thickness is sufficiently
small compared to the turbulent length scales (small turbulent Reynolds number). The main advantage
of the flamelet approach is that the flamelets, which describe the local structure of the turbulent flame,
are coupled to the turbulent flow by only a few parameters, i.e., the mixture fraction, its variance and the
scalar dissipation rate. The chemistry kinetics can thus be handled separately from the turbulent flow.
This feature is used to calculate the flamelets in a pre-processing step and store them in look-up tables
which are accessed during the LES to retrieve the local species composition.



1st International Seminar on Non-Ideal Compressible-Fluid Dynamics for Propulsion & Power  IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 821 (2017) 012010 doi:10.1088/1742-6596/821/1/012010

Table 1. Boundary conditions of Singla et al. [18].

LOx \ CHy4
i lgfs] Tin (K] pin [kg/m’] | rit[gfs] Tin K] pin [kg/m’]
44.4 85 1177 1431 288 42

Flamelet models have often been used for flows at atmospheric pressure where broad experience has
been gathered for different flame types. However, the approach needs to be revised when used to simulate
combustion at supercritical pressures. The influence of real-gas thermodynamics on the inner structure
of the supercritical hydrogen flames has been investigated by several groups [38, 26, 39, 40]. They show
that thermodynamic non-idealities have no significant effect on the inner structure of the flame and an
ideal gas law is sufficient to calculate the flamelets. The reason is the strong temperature increase near
the flame front that limits the influence of real-gas effects to regions close to f = 0 and f = 1. A further
aspect is the influence of pressure on the reaction kinetics. Since the reaction speed increases with the
pressure, supercritical flames are shown to be thin and resistant to strain [38, 26]. This supports the
flamelet assumptions of high Damkd&hler number and small turbulent Reynolds number. However, as
pointed out by Lacaze and Oefelein [27], an additional energy equation is needed in the LES to account
for pressure and strain variations. In particular, the effect of pressure on the flamelet solution is typically
neglected in the flamelet calculation. Considering that the caloric properties are pressure-dependent
when using the PR EoS, energy conservation can only be guaranteed by solving an additional energy
equation in the LES.

In the present work, we use the Flamemaster software of Pitsch [41] to solve the flamelet equations
for a strained counterflow diffusion flame configuration under the assumption that the fluid is an ideal
gas. The reduced methane oxidation mechanism of Jones and Lindstedt [42] with additional reactions
that account for dissociation of water and oxygen as proposed by Frassoldati et al. [37] is used to
reduce the number of species. The flamelet solution is filtered using a B-shape PDF for the mixture
fraction and a Dirac delta function for the PDF of the scalar dissipation rate to account for SGS
fluctuations. The filtered species composition is accessed during the LES using the filtered values of
mixture fraction, mixture fraction variance and scalar dissipation. The effect of pressure fluctuations and
real-gas thermodynamics is thus not reflected in the species composition of the flame structure. However,
we solve an enthalpy transport equation and calculate the thermodynamic properties in the LES using
the real-gas thermodynamics models based on the volume correction of Abudour et al. [14].

Figure 2 shows the result of a CH4/O; flamelet simulation at y; ~ 0 and p = 5.61 MPa. To verify that
the simplified reaction mechanism of Frassoldati et al. [37] is appropriate for the present configuration,
the results are compared with a flamelet simulation using the full CH4/O, reaction mechanism (GRI 3.0
[43]). Only minor differences can be observed for the major species.

Experimental and numerical setup

Reference experiment

The present numerical approach to simulate real-gas combustion is tested against the measurements of
Singla et al. [18] who performed a series of experiments for trans- and supercritical LOx/CHy flames at
the Mascotte testing facility. The test bench has previously been used to study high-pressure hydrogen
flames [5, 44] and has been extended to allow for the use of methane as fuel. The combustion chamber
is a 50 x 50 mm? square duct with a length of 400 mm and a converging-diverging nozzle at the chamber
end. The propellants are injected through a single coaxial injector element that is mounted on the
faceplate. All four side walls of the chamber can be equipped with rectangular windows to allow for
optical measurements. Singla et al. [18] have used a intensified (CCD) camera to collect the spontaneous
emission of OH* at a rate of 15 Hz. In addition the CH* signal has been detected with an ICCD camera at
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Figure 3. Instantaneous fields of mixture fraction, scalar dissipation rate, temperature and density in
a plane perpendicular to the inflow plane. The white line in a), b) and c) denotes the pseudo-critical
temperature of oxygen 75, 0, = 157.4 K. The white line in d) denotes the stoichiometric mixture f = 0.2.

a rate of 2.5 Hz. After averaging the instantaneous images, an Abel transformation has been carried out
to obtain slices through the flame which are used for the present comparison with the numerical results.

Singla et al. [18] have performed several experiments varying both the chamber pressure and the
injection temperature. For the present study, we simulate the operating point G2 for which the injection
conditions are summarized in Table 1. The chamber pressure p = 5.61 MPa is supercritical with respect
to the pure species (p., 02 = 5.04 MPa, p. cys = 4.6 MPa). The temperature of the injected oxygen
To, = 85K is smaller than the pseudo-critical temperature at these conditions (7', 0, = 157.4 K) and
the fluid is thus in a transcritical state which is characterized by a high liquid-like density and viscosity.
However, methane is injected in a purely supercritical state, i.e., both the pressure and the temperature
exceed their critical value, and the fluid features a much smaller, gas-like density. The heat release
at these conditions is 0.55 MW given that the oxidizer is fully consumed. This is a valid assumption
considering that the mass flux ratio 1o, /ey 4= 0.31 is well below the mass stoichiometric value of 4.

Computational setup

The LES is performed with the open-source CFD software OpenFOAM which has been extended by the
real-gas flamelet model described above. The grid comprises 16 x 10° hexahedral cells and is block-
structured. The minimal axial and radial cell size at the injector is 0.2 mm and 0.025 mm, respectively.
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To reduce the numerical cost, the numerical domain is truncated after 150 mm. This is sufficient to
accommodate the flame and avoid interference with the outflow boundary. The inner tube of the coaxial
injector is D = 4.4 mm and the width of the annulus and the post is AD¢cp, = 2.2 mm and AD, = 0.6
mm, respectively.

The turbulent inflow data for both the O, and the CHy inlet are generated with a separate precursor
incompressible LES using cyclic boundary conditions in axial direction. The domain length for these
simulations is 2w Dy, where Dy, is the hydraulic diameter of the respective inflow. Slices of the turbulent
velocity fields are extracted from this simulation and accumulated in a database which is then used to
interpolate the turbulent velocity field onto the coarser grid of the flame simulation.

For spatial discretization we use a second-order central differences scheme with a van Leer limiter.
To avoid unphysical oscillations, it was necessary to use localized artificial dissipation y* in regions of
high density gradients.

= C,upasAz a_Z

0x j

as and A are the speed of sound and the local filter width, respectively. The constant C,, is set to 0.01.

The method is similar to that proposed by Terashima et al. [45], however, as a sensor we use the local

gradient of the compressibility factor (Z = pv/RT), which is zero in regions where real gas effects are
negligible.

&)

Results
General flame features
To give a qualitative impression of the general features of the flame, Figure 3 shows the instantaneous
fields of mixture fraction, scalar dissipation rate, temperature and density. The white line in Figure 3
a), b) and c) denotes the pseudo-critical temperature of oxygen and marks the region of high density
gradient. The fluid which is enclosed by this line features high liquid-like densities and a low velocity.
The white line in Figure 3 d) denotes the stoichiometric mixture fraction and marks the flame front.
Close to the injector at x < 15 mm, a thin diffusion flame can be observed. The flame surface is
perturbed by small scale turbulent structures and it exerts a relatively high level of strain. The maximum
scalar dissipation rates in this region are in the order of 10* s=!. Further downstream the boundary
layer instability grows and large scale eddies evolve leading to a higher degree of flame wrinkling and
a thickening of the mean flame front. However, the continuous dense oxygen core persists until x ~ 40
mm. Thereafter dense pockets of O, detach from the core. They are transported further downstream
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Figure 4. Averaged axial velocity field in a plane perpendicular to the inflow plane. The white line
denotes (U) = 0 m/s.
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Figure 5. Averaged OH mass fraction in comparison with the measured OH* radiation of Singla et al.
[18].

where they react with the surrounding fuel. In this region, i.e., at x ~ 50 mm, a strong radial expansion
can be observed. The flow is redirected towards the chamber wall and reactions stop shortly thereafter at
x ~ 60 mm.

This characteristic flame shape can be explained considering the averaged velocity field which is
shown in Figure 4. The white lines denote zero axial velocity and mark the recirculation zones. In
addition to the backflow region that forms close to the chamber wall between the flame and the face plate,
a secondary recirculation can be observed downstream of the reaction zone. This was also observed in
the LES result of Schmitt et al. [20]. Due to the interaction with the chamber wall in the rear part of the
flame, the flow of hot combustion products is redirected towards the chamber axis where is flows back
towards the flame. The momentum of the backflow further increases the expansion of the flame leading
to a stable flow condition.

Comparison with experimental data

Temporal averaging was started after the flow field was considered fully developed in the region of
interest and then continued for Ar = 0.08s ~ 45D/ 002- In addition, we make use of the symmetry and
spatially average the flow field using the 4 half planes that are perpendicular to the injector plane and the
chamber wall. The averaged OH mass fraction is compared with the experimental result of Singla et al.
[18] in Figure 5.

The characteristic flame shape, which has been discussed in the previous section, can also be seen in
the experimental result. The first section of the flame is characterized by a constant spreading angle. At
x ~ 40 mm a sudden expansion can be observed, which is followed by an abrupt end of reaction. This is
well reproduced by the LES. Also the calculated length of the flame as indicated by the OH mass fraction
is in excellent agreement with the measurement.

Conclusion

The current contribution presents a real-gas flamelet model for large-eddy simulations (LES) to simulate
non-premixed combustion at supercritical pressures. The main challenges are the accurate modeling
of thermodynamic non-idealities as well as their consistent coupling with the flamelet approach. The
thermodynamic model used herein consists of a cubic Peng-Robinson equation of state (PR EoS) and a
volume-translation method that corrects deficiencies of the PR EoS at low temperatures. This method
yields a highly accurate thermal equation of state at reasonable computational effort. Pressure and
strain fluctuations are taken into account by solving the energy equation along with the mixture fraction
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transport equation which represents the local species composition. Subgrid mixture fraction fluctuations
are taken into account with a S-shape probability density function and a reduced methane reaction
mechanism that consists of 9 species and 6 reactions is used to generate the flamelets.

Simulations have been performed for the experimental test case of Singla et al. [18], in which liquid
oxygen and gaseous methane are injected into a rectangular combustion chamber. The pressure is
supercritical. A comparison with the available OH* radiation measurements shows that the predicted
flame length is in excellent agreement with the experiment and characteristic flame features are
well reproduced. The result indicates that the real-gas adapted flamelet approach for combustion at
supercritical pressures that is presented herein is well suited to simulate this flame.
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