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Abstract. This paper presents a novel method for computing the tail probability of a
given quantity of interest by using only a low number of evaluations of the computer model,
representing the problem of interest under uncertainties. This method is then applied to the
study of rarefaction shock waves (RSW) in a dense-gas shock tube. It is well-known in literature
that the prediction of a RSW is highly sensitive to uncertainties on the initial flow conditions.
The objective of this work is to compute a very accurate estimation of the RSW probability of
occurrence in a shock tube configuration.

1. Introduction

Several theoretical and numerical studies have shown that dense-vapor transonic flows of
substances formed by complex organic molecules could feature phenomena such as rarefaction
shock waves and compression fans. Fluids that might exhibit nonclassical gasdynamic
phenomena are called BZT fluids from the name of the three scientists who first theorized
their existence. These anomalies occur when the fundamental derivative of gasdynamics

r =1+ g (%Z)s with p the fluid density, a the sound speed and s the entropy, becomes

negative between the upper saturation curve and the I' = 0 contour. Such a region is often
referred to as the inversion zone and and the I' = 0 contour is called the transition line.

The experimental proof of nonclassical gasdynamic effects in flows of dense vapors has been
the subject of several studies [2, 3, 1], most of all focused on a shock tube configuration for
generating a rarefaction shock wave (RSW). These works show that nonclassical gasdynamic
effects are generally very weak with respect to compression shock waves, and can occur only
in a limited range of conditions. As shown for instance in [4] and [5], the accuracy of the
thermodynamic model has a strong influence on the simulation of nonclassical phenomena, to
the point that their presence can depend on the accuracy with which fluid model parameters
are determined.

In [1], an algorithm has been presented to handle stochastic inverse problem with high
efficiency and a reduced computational cost. This algorithm has then been applied to the
design of a challenging scientific experiment involving the compressible flow of a dense gas in
the FAST shock tube facility at TU Delft. It was shown that the unconventional rarefaction
shock wave is very sensitive to uncertainties in the initial experimental conditions.

This paper is focused to cure some of the issues emerged in [1]. The difficulties to accurately
compute the tail probability and the associated computational cost are tackled with a novel
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uncertainty quantification techniques, based on an interpolation technique and an importance
sampling algorithm. The final algorithm is then applied to the simulation of the TU Delft
experiments.

The paper is organized as follows. Section 2 is devoted to the description of the various
numerical tools needed in the study: the CFD solver for dense gas flows simulations, the
thermodynamic models, and the uncertainty quantification approach. In section 2.4, the
stochastic method is presented. Section 3 illustrates some results obtained on the computation
of the tail probability of the RSW. The closing section summarizes the conclusions that can be
drawn from the present work.

2. Methodology and tools

2.1. CFD solvers for dense gas flows

The NZDG code [1] solves the quasi-1D Euler equations with second-order accuracy in time
and space. The convective fluxes are discretized using the Roe numerical flux and a second-
order limited MUSCL variable reconstruction. The Roe average for dense gas flows is computed
with the simplified approach proposed in [6] and the slope limiter introduced in the linear
reconstruction is of the Van Albada type. Second-order accuracy in time and robust time-
integration are achieved using a three-level implicit formula to approximate the physical time-
derivative, within a dual-time sub-iterative approach to solve the resulting non-linear system.

2.2. Thermodynamic models

Siloxane D6 is the fluid currently chosen for the TU Delft experiment. The Peng —
Robinson — Strijek — Vera (PRSV) cubic equation of state (EoS) is considered to describe
its thermodynamic behavior. The robustness of this equation with respect to more complex and
potentially more accurate multi-parameter equations of state of the Span-Wagner type ([5],[7],[4]
has been discussed in [8] and [9]. Peng and Robinson (1976) proposed a cubic EoS of the form:

RT a
— . 1
v—>b v?42bv —b? (1)

p:

where p and v denote respectively the fluid pressure and its specific volume, a and b are
substance-specific parameters related to the fluid critical-point properties p. and T.. To achieve
high accuracy for saturation-pressure estimates of pure fluids, the temperature-dependent
parameter a in Eq.(2.1) is expressed as :

a = (0.457235R*T2 /p?) - o (T) (2)

while
b= 0.077T796RT. /p. (3)

These properties are not completely independent, since the EoS should satisfy the conditions of
zero curvature and zero slope at the critical point. Such conditions allow computing the critical
compressibility factor Z. = (p.v.)/(RT.) as the solution of a cubic equation. The corrective
factor « is given by:

a(Ty) = [1+ K (1-T1%%)]° (4)

with
K=Ko+ K (1+T)°)(0.7-T,) for T, <1 (K1 =0, forT, > 1) (5)

and
Ko = 0.378893 + 1.4897153w — 0.1713848w? + 0.0196554w°. (6)
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The parameter w is the fluid acentric factor and K is obtained from saturation-pressure fitting
of experimental data. The caloric behavior of the fluid is approximated through a power law for
the isochoric specific heat in the ideal gas limit:

cone (1) = 0 (1) (1) ()

with n a material-dependent parameter.

2.8. Sources of Uncertainty : initial conditions of the experiment

The initial conditions (IC) for the experiment (and for the simulation) are prescribed according
to the theory described in [10], to maximize the Mach number of the rarefaction shock wave and
facilitate the wave detection. The maximum achievable precision in controlling the temperature
and pressure values in the charge tube has been estimated from the measurement instruments
and hardware specifications to be 0.4% for the pressure and 0.1% for the temperature.

In [1], an automatic procedure has been set up to detect an initial left state satisfying the
aforementioned requirements : in the first step, a discretization of the p-v plane has been
generated by moving along isobaric and isentropic curves; in the second step, the uncertainty
region is computed using the given uncertainty levels on initial pressure and temperature and
a Monte-Carlo approach; in the third step, it is verified the uncertainty region does not cross
the saturation curve (to avoid liquid-vapor mixture) and that the chosen point is located as
close as possible to the saturation curve. This analysis yields an initial left state, denoted P1,
represented in figure 1. The uncertainty region for P1 has a single point in common, without
crossing, with the maximal allowed saturation curve computed with the TD uncertainties taken
into account.

2.4. Stochastic method

In the following, we describe a new stochastic method specifically designed to accurately compute
very low probability subject to multiple failure regions. The idea is to construct a metamodel of
the quantity of interest specially refined on the failure branches, and then resort to a sampling-
based method on the metamodel in order estimate the probability of failure.

2.4.1. Introduction Given a probabilistic model, described by its physical n-dimensional
random vector Y with its probability density function (PDF) fy and a performance function J
representing the system response, failure is usually defined as the event G = {J(y) < 0} so that
the failure probability is defined as follows:

by =P(I(Y) <0) = Ev[16(Y)] = [ 1) fx(y)dy )
where 1g is the failure indicator function, being equal to one if J(y) < 0, and zero otherwise.
J is called the performance function in this paper. An isoprobabilistic transformation 7" (e.g.
Rosenblatt transform) is used to define the standard random variables X and the performance
function G in the standard space as G(X) = J(T~}(X)) with X = T(Y).
We recall that X ~ N(0, I,,) is the standard normal random vector of R™. The failure domain
F in the standard space is then defined as F = {x € R" s.t. G(z) < 0}. The failure probability
reads

n

ps = P(G(X) < 0)) = E[17(X)] = / 1.7 () fx (x)dx (9)
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Figure 1: Robust point (P1) obtained by means of the automatic procedure, and uncertainty
region.

Computing failure analysis in the standard space simplifies the analysis since, the random
variables are decorrelated and normalized.

A typical approach to the estimation of the failure probability (Eq. 9) is that of resorting to
a crude Monte Carlo (MC) scheme. It yields to an unbiased and convergent estimation of py,
with a low convergence rate. It usuaally requires a prohibitive number of simulations.
Various methods have been proposed in the literature to adress this problem.
A first family of method aims to reduce the variance estimator in order to increase the
convergence rate. Importance sampling techniques [11] [12] are part of this family, and have been
developed over the past few decades to shift the underlying distribution towards the failure region
so as to gain information from rare events more efficiently. The success of the method relies on
a prudent choice of the importance sampling density, which undoubtedly requires knowledge of
the system in the failure region.
The second class of methods relies on the substitution of the original performance function by a
surrogate model within a sampling-based scheme; a metamodel is in general orders of magnitude
faster to be evaluated. In such metamodel-based approaches, Monte-Carlo sampling (AK-MCS
[17]) or Importance Sampling (IS) techniques (AK-IS [13], MetaAK-IS? [14], KAIS [15], AK-SS
[16]) are then used directly on the surrogate. Here, we propose a new method for the metamodel
construction. It makes the use of the learning function used in AK-MCS [17], k-Means clustering
algorithm [18], and a Metropolis-Hastings MCMC sampling method [19]. It is designed to fit
with multiple failure regions, and very low probability. It provides few advantages compared to
other metamodels refinement:

e A parameter is used to avoid points clustering and also give the opportunity for the user
to indirectly control the refinement cost.
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e The different failure-branches are refined back and forth during the process. So if the
number of DOE required during the metamodel building is too high (impossibility to build
a metamodel for instance), the resulting metamodel will be ”equally” refined in all branches.

e It focuses on the limit state performance function.

This section is organized as follows. The concept of probabilistic classification and of
importance sampling are presented in Sections 2.4.2 and 2.4.3, respectively. The metamodel
refinement strategy is detailed in subsection 2.4.4. An academic test-case for validation is
discussed in subsection 2.4.5.

2.4.2. Probabilistic classification using Gaussian Processes A metamodel is built from a design
of experiments (D.o.E.), a set of computed experiments denoted by X = {x1, ..., X, }, belonging
to the support Dy of X. The performance function G is assumed to be a sample path of an
underlying Gaussian Process (GP) denoted by G. The best linear unbiased estimation (BLUE,
see [20]) of G at point x is shown to be a Gaussian random variate G(x) ~ N(ué(x),aé(x)),
where I x) T (x) are given by the Gaussian Process algorithm. Further details can be found
in [21].

GP provides both a surrogate for the limit-state function g(x) which is denoted by Heéx(x) and

an epistemic prediction uncertainty which is characterized by its variance O’é )

We introduce the probabilistic classification function:

(x) = PIG(x) < 0] = & (0_“G(X>> Cifx ¢ A (10)

TG(x)

where the probability measure P[] refers to the Gaussian nature of the GP predictor G(x)
and ¢ denotes the cumulative density function of the one-dimensional standard normal law. It
may be interpreted as the probability that the predictor G(x) is negative with respect to the
epistemic uncertainty. We will later use 7w as a surrogate for 1.

We also introduce the meta-failure domain F in the standard space, defined as F =

{x e R" s.t. R < 0}.

2.4.3. Importance Sampling and Quasi-Optimal Density Let h be a PDF dominating 14<ofx.
The failure probability may be rewritten as follows:

_ fx(x) _ fx(X)
pr = [ Lozol) X n0ntx = Eal1yeax) 200 (1)
It easily leads to the importance sampling estimator:
N
) 1 fx(x™)
pf IS N ;]lggo(x ) h(X(k)> (12)

where {x(1), ..., x(M} is a set of samples drawn from the instrumental density h. According to
the central limit theorem, this estimation is unbiased and its quality may be measured by means
of its variance of estimation which reads

N
) 1 1 x(FH)2
Varlpy 5] = 3 (N > 1) X Is) (13
k=1
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The corresponding coefficient of variation is defined as 5p ;= 7”/;7[213}.

This variance is zero (optimality of the IS estimator) when the instrumental PDF is chosen
as h*(X) — ﬂggo(;‘;fx(x)
However, this PDF involves p; in its denominator, so it is not implementable in practice.
Here, it is proposed to use the probabilistic classification function (Eq. 10) as a surrogate for

the real indicator function 14<o(x). The proposed quasi-optimal PDF reads hA*(X) = %,

where Ex [m(X)] can be evaluated with crude Monte-Carlo method.

Markov chain Monte Carlo (Metropolis-Hastings sampler) simulation [19] is used in the next
subsubsection to sample points drawn from from the quasi-optimal instrumental PDF l{*, that
are more likely to be close to limit-state.

2.4.4. Metamodel Refinement Strategy The efficiency of the approach mostly relies on the opti-
mality of the instrumental PDF h*. Thus it is proposed here to adaptively refine the probabilistic
classification function so that the quasi-optimal instrumental PDF h* converges towards its op-
timal counterpart h*.

A learning function U [14] associated to the GP metamodel G is introduced. For a given x,
U(x) is defined as

|0
U(x) = 2 (14)
G (x)
¢(U(x)) is the probability that x is correctly classified by the predictor. So if N points x(7) are
available,

xo = arg min(U (x())) (15)

)

is the point in correspondence of which the classification is the most uncertain. In order to
avoid DOE clustering, a constraint is added, stating that xy should be distant of at least d,
from all existing DOE. The algorithm proceeds as follows:

(i) Initial DOE and metamodel definition: sample mg points generated by a Latin Hypercube
sampling.

(ii) Sampling: Sample a Monte-Carlo population N = {z(M), .. (M}, adapting N so a
coefficient target of variation is reached.

(iii) Global Point Selection: Refine and update the metamodel selecting the best point among
N according to the learning function U.

(iv) Classification: Classify N between failure and safe points.

(v) Seed Selection: Use k-Means [18] clustering algorithm on the set of failure points. Its K
clusters centroids are considered: (x,...,x5). Set k= 1.

(vi) Unimodal MCMC Sampling: Sample a set of Ny;cnc points S,iWCMC drawn from the PDF
h’é using the modified MCMC Metropolis-Hastings sampler, with the seed initialized at x; .
Burning and thining procedure are used. Remove the first Nﬂ"gMo values obtained, and
then, accept only one sample every sy;carc samples.

(vil) Enrich D.o.E. at step k: Select the best point {Z; } (if exists) among SM“MY according to
the learning function U. Update the metamodel.
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(viii) Stopping criterion If k # K: set k = k + 1 and loop back to step vi.

K

If k=K and |J {7, } = @, stop the metamodel refinement algorithm.
k=1

Otherwise, set ¢ = ¢ 4+ 1 and loop back to step ii.

The metamodel refining procedure stops when no more points can be added. In order to
evaluate the probability of failure once the metamodel is refined, it is possible to resort to Monte-
Carlo method if py is low enough. Otherwise, it is proposed to use the Importance Sampling
method, with a gaussian mixture density as the Importance Sampling Density. MCMC points
are sampled from different seeds in parallel, and then classified using k-Means algorithm. The
gaussian mixture parameters: weights, means, covariance are then empirically computed from
those classified MCMC points.

2.4.5. Validation: 2D analytic example with four failure regions We test the method in case of
four failure regions. The performance function [14] [22] in the standard space reads:

34 (m;gz)Q )

( )2 v

T1—T2 T1+x2

G(z1,72) = min A (16)
T — T2+ Vol

—(21 — 22) + %
where 1, zo are the realizations of two independent standard Gaussian random variables.
The results in Table 1, are compared to those reported in [14] [17]: crude MC, FORM, DS,

Subset, SMART, MetaAK-1S? and AK-MCS+U. The method proposed shows a good accuracy,
with less performance calls than the other methods.

Method Nealls ﬁf 5f
Crude MC 781,016 2.24 x 1072  2.23%
FORM 7 1.35 x 1073
DS 1800 222 x 1073
Subset 600,000 2.22x107% 1.5%
SMART 1035 2.21 x 1073
MetaAK-IS? 138 222x 1073 1.7%
AK-MCS+U 96 2.23 x 1073
MetaAL-OIS | 15+61 2.23x1073 0.09%

Table 1: Comparison of the performances of the MetaAL-OIS with several algorithms of
literature[14].

Figure 2 compares the limit-state obtained by the metamodel, to the true limit-state.

3. Application to the shock tube

The meta-model refinement of the meta-IS algorithm is applied to the estimation of the failure
probability of the experiment, i.e. the probability of the pre-shock Mach number, in the
reference frame attached to the shock, to be less than one. Indeed, this Mach associated to
the rarefaction shock wave is required to be larger than one for the shock to be well measured.
In this configuration, the performance function can be then defined as follows

G(pr,pr) = M —1, (17)
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Figure 2: 2D analytic example with four failure regions: Refined Metamodel with 76 points.

L, pPr being respectively the left and right pressure. M denotes the Mach number associated
to the RSW. The failure event is

py =P(G(pL,pr) <0) =P(M(pL,pr) <1) (18)

where pr, pr are assumed to be two independent adimensioned random variables (Table 2),
according to the uncertainty assessment.

Variable Distribution Minimum Maximum

PrL Uniform 0.908 0.984
PR Uniform 0.099 0.108

Table 2: Probabilistic model for the shock tube

The application of the algorithm presented in the previous section permits to compute the
metamodel of the Mach number associated to the RSW, indicated as M in the following. By
sampling the metamodel, several analysis are possible in terms of statistics evaluation. Results
about the tail probability computations and some statistics associated to the Mach number are
summarized in table 3.

Note that the failure probability, i.e. M < 1, is of 43.5%, where the variance of the estimator
amounts to the 0.16%. This means that the tail probability is very well computed, and indicates
a very large failure probability in terms of occurrence of a RSW during the experiment.

A plot of the probability density function (PDF) of the Mach number is shown 3, where
some of the properties in terms of expected value, variance and 90% confidence interval, are
reported in Table 3. Also, plots of the metamodel refined in the standard and its contour in
the physical spaces are shown in Figures 4a and 4b. Note that the PDF features a not-gaussian
behavior, it is very skewed towards the lower Mach, confirming the large probability that the
experiment is not effective because of the low value of the Mach. This is a confirmation of the
results obtained in [1], even if the shape of the PDF and the associated failure probability is
slightly different. This could be associated to the limited number of samples used in [1] for
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computing the Polynomial-chaos based metamodel, which could deteriorate the computation of
the low-probability events. Note that the presented tool provides a very fast estimation of the
failure of the experiment, permitting potentially the investigation of a large set of conditions at
a very low computational cost.

Neats ﬁf 5}3
204+ 7 0.435 0.16 %
Iy U?\Z 90% confidence interval
1.0072006 5.271 x 1074 0.9745-1.0466

Table 3: Tail probability estimation and Mach number statistics

Histogram-PDF of M: 4 =1.0072, 0 =0.0229

- pdf
— M=1 :
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p—20 u—a W pnt+a nt 2o
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Figure 3: PDF of the Mach Number associated to the Rarefaction Shock Wave.

4. Conclusions

This paper illustrates a novel method for computing the tail probability of a given quantity of
interest by using only a low number of evaluations of the computer model. This algorithm is
applied to the prediction of the occurrence of a rarefaction shock wave (RSW) in a shock tube
configuration, since the computation of the tail probability of the Mach associated to the RSW
is very sensitive to the initial conditions uncertainty.

Results show that the occurrence of the RSW is around the 56%, which is quite low and
makes questionable the repeatability of the experiment for the chosen initial conditions. This
highlights the importance of assessing uncertainty when weak effects, as those associated to
a non-classical gasdynamics, have to be captured. Otherwise, the risk is to overestimate the
quality of the numerical experiments, which could be very sensitive to some conditions, and
provide in practice low-probability results. The low number of evaluations, which are needed
to compute the tail probability, illustrates the potentialities of the proposed stochastic method.
Also, it should be mentioned that there is no limitation to apply this stochastic method, taking
account for uncertainties with the parameters of the thermodynamic model adopted to describe
the fluid.
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Figure 4: Shock Tube: Refined Metamodel.

Future works will be oriented to the optimization of the geometry and the initial conditions

in order to maximize the probability of occurrence of the RSW.
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